

The future direction of lithium-ion battery chemistry

Manuel Wieser Head of CET Division

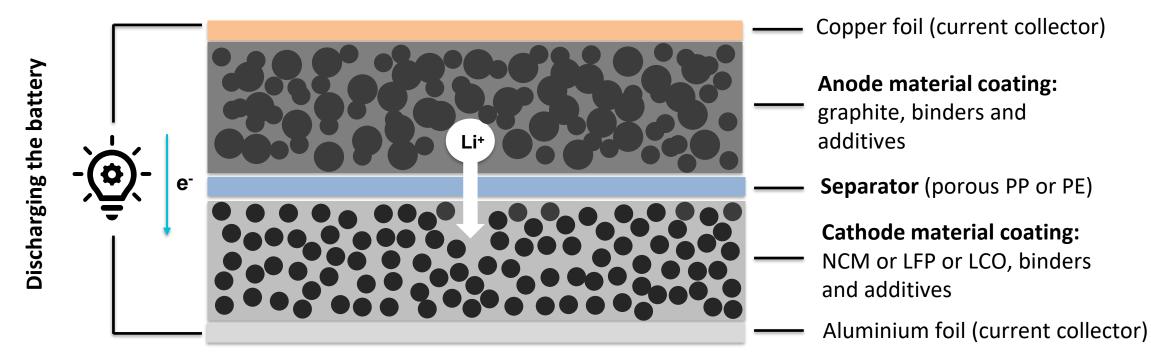
19th of July 2023 Sydney ICC

ENERGY TX3N

Global lithium-ion battery cell demand (GWh) AnteoTech

Driven by electrification of transport and energy storage

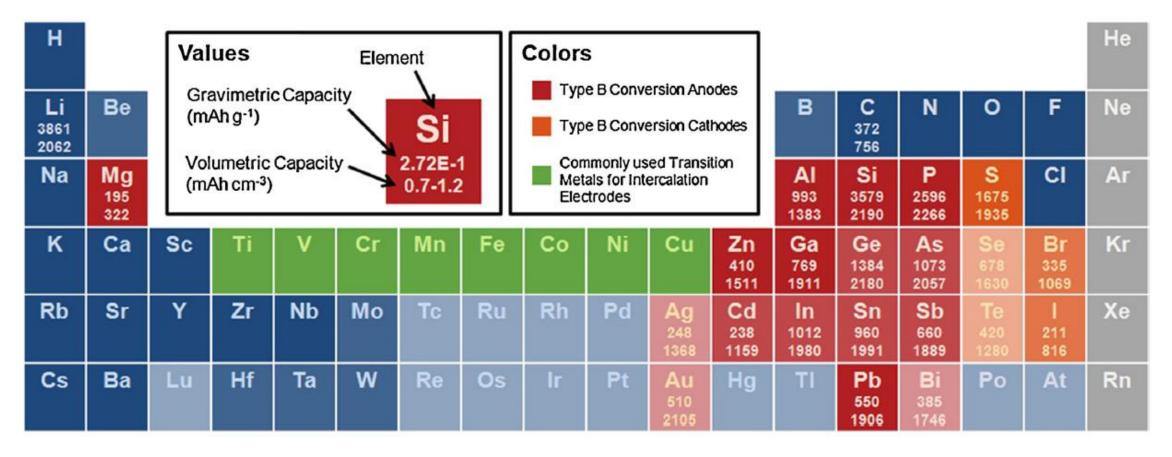
2023 Projection 2022 Projection ~4,700 Total Consumer electronics 3,946 Stationary storage Mobility ~6x +30% p.a. ~1,700 1,578 ~700 551 2021 2025 2030 2022 2030 2025


Source: HIS; WEF; McKinsey Battery Demand Model 2022

Source: McKinsey 2023 - Battery 2030: Resilient, sustainable, and circular

Anatomy of a lithium-ion battery

The most basic electrochemical unit


ANODE (-)

CATHODE (+)

Battery chemistry – A spectrum of options

Most elements can be used for a form of energy storage

Source: Nitta et al., Materials Today Volume 18, Number 5 June 2015

The anode (-)

Different anode materials can have very different characteristics across several metrics

Silicon and lithium metal's cycle life can be enhanced by use of appropriate enabling technologies

	Energy by weight	Charge performance	Cycle life	Safety	Cost
Artificial graphite					
Natural graphite					
Silicon					
Lithium metal					
Amorphous carbon					
Lithium titanate (LTO)					

Why silicon?

Silicon stores close to 10x more Li⁺ by weight and 3x more Li⁺ by volume Near term opportunity to develop cheaper, smaller and lighter batteries

⁴C - Graphite 371 mAh/g

14**Si - Silicon** 3,579 mAh/g

Å AnteoTech

CLEAN ENERGY TECHNOLGY DIVISION

'Enabling technology for smaller, lighter and cheaper batteries'

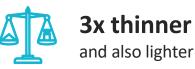
AnteoTech – High silicon anode

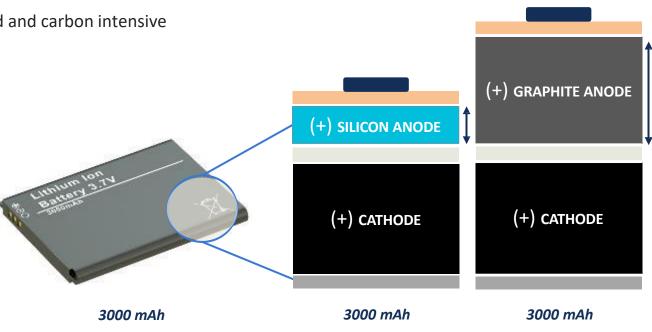
Combining know how and complementary technologies to provide a step change in battery performance

500+ charge / discharge cycles

demonstrated whilst retaining 90% of the initial capacity in high silicon anode

Silicon anodes can make batteries smaller, lighter and cheaper


Low grade, unrefined silicon


competitors use super refined silicon - expensive, limited and carbon intensive

8.5x cheaper active material on a \$/kWh basis

The cathode (+)

<mark>Ă Anteo</mark>Tech

- Complex metal oxides
 - 1979: R&D on lithium-ion batteries commences using LCO
 - 1991: First LIB is commercialized by Sony (Coke/LCO)
 - **1996:** Lithium manganese oxide (LMO) is commercialized
 - 1996: Lithium iron phosphate (LFP) is discovered
 - **1999:** Lithium nickel cobalt aluminium oxide (NCA) is discovered
 - 2000: Nickel manganese cobalt chemistries (NMC) appear
- Further development of chemistry categories
 - Higher Nickel content in NMC to drive up capacity
 - Higher Manganese content in NMC to drive higher voltages
 - LMFP: Manganese introduction into LFP to drive to higher voltages
- Possible future cathode chemistries
 - Sulfur and possibly Air (O₂)

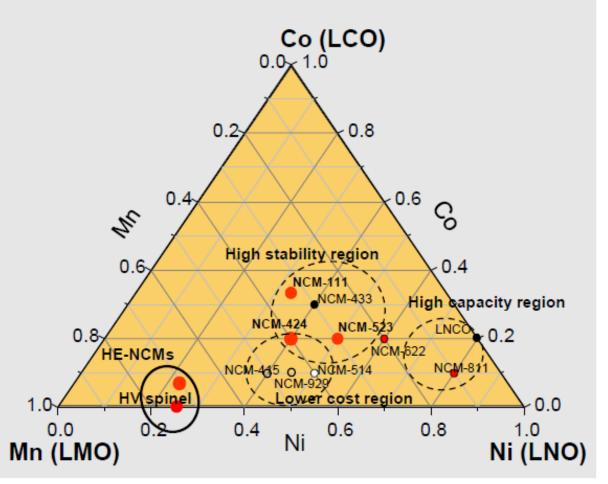
STANDARD	CATHODE (
ADVANCED	CATHODE CHEMISTRIES
NEW	

The NCM family of materials

Early NCM variants (past)

NCM 111 - Discharge capacity: ~ 150 mAh/g NCM 523 - Discharge capacity: ~ 165 mAh/g

Nickel rich variants (now)


NCM 622 - Discharge capacity: ~ 175 mAh/g NCM 811 - Discharge capacity: ~ 200 mAh/g

Manganese rich variants (future)

HE-NCM - Discharge capacity: > 250 mAh/g HV-Spinel - Discharge capacity: ~ 140 mAh/g

$$Wh = Ah^*V vs. Ah^*V$$

NCM COMPOSITION DIAGRAM

Source: BASF, 2014

Beyond lithium-ion

Solid-state batteries

- Conventional lithium-ion battery electrolytes consist of a mixture of flammable and toxic solvents
 - Electrolyte fills pores in anode, cathode and separator
 - Transports lithium ions between the two electrodes
- Solid-state electrolyte systems

Polymers
PEO + additivesOxides
Perovskite, NASICON, GarnetSulphides
Sulphide glasses & ceramics, Agryodite+ Easy to scale & cost-effective processing
+ Good interfacial compatibility
+ Highly flexible+ Good ionic conductivity
+ High strength but brittle
+ Good safety (thermal stability)+ Highest ionic conductivity
+ Good interfacial compatibility
+ Reasonably scalable

- High operating temperatures required
- Lowest ionic conductivity
- Limited energy density improvement

- Poor interfacial compatibility (resistance)
- Difficult to scale for mass manufacturing
- High sintering temperatures required

- High reactivity with water and air
- High cell pressure required for performance
- Can generate toxic byproducts (H₂S)

AnteoTech

Solid-state electrolytes and batteries

	Claim	Practical consideration		
Safety	 No flammable electrolyte leads to better safety and thermal stability 	 Higher energy density paired with pure lithium metal as the anode does not necessarily mean better safety 		
Energy density	 Solid state electrolytes enable higher energy densities 	 Without changing to a different anode and cathode chemistry gravimetric energy density would be reduced 		
Power capability (Charge)	 Fast charging is advertised by some companies as a feature of solid-state batteries 	 Most solid-state chemistries struggle to deliver fast charge performance based on interface issues and lower ionic conductivities at room temperature 		
Manufacturing at scale	 Fewer manufacturing steps lead to a reduction in cost 	 Processing steps are generally more complex and may require additional high temperature sintering steps and inert gas conditions paired with high capital investment 		
Battery cost	 Simplified battery pack cooling (heating as opposed to cooling) and protection packaging 	 Battery pack heating requires re-engineering of end application while solid-state batteries generally require higher pressure to work well 		

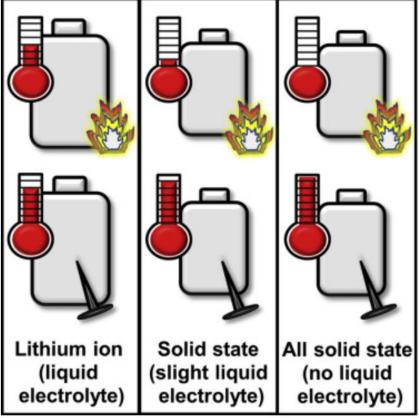
Lithium - Metal oxide cathode

³Li - Lithium

3,860 mAh/g

Metal oxides (NCM)

200+ mAh/g

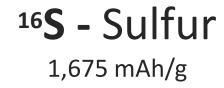


Lithium - Metal oxide cathode

Dendrite formation and controlled lithium deposition are key challenges

External heating failure vs. Internal shortcircuit vs. Nail penetration test

Source: Kuehnle et al., Journal of the ECS, Vol 169, 2022

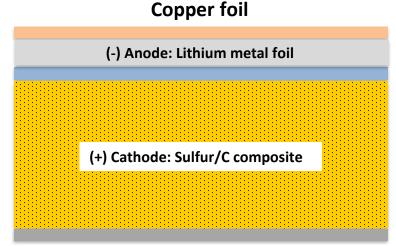

Lithium - Sulfur

³Li - Lithium 3,860 mAh/g

Lithium - Sulfur

Targeted benefits

- High specific capacity: 1675 mAh/g (theoretic)
- Very light weight cells (promises cells with >400 Wh/kg)
- No heavy metals in cathode


Challenges

- Complex working mechanism (polysulfide formation)
- Sulfur is an electrical insulator (requires carbon)
- Sulfur has low density (impacts Wh/L)
- Average cell voltage is 2.1V (1.7V lower compared to LIB)
- Low published energy density values (50% lower than LIB)
- Poor cycle life at full depth of discharge or high rate

Lower predicted cost

- Sulfur costs < \$150/t*
- Cobalt costs > \$33,000/t*
- Nickel costs > \$20,500/t*

*Source: 12 July 2023 - Tradingeconomics.com *Source: 12 July 2023 - Statista.com

Aluminium foil

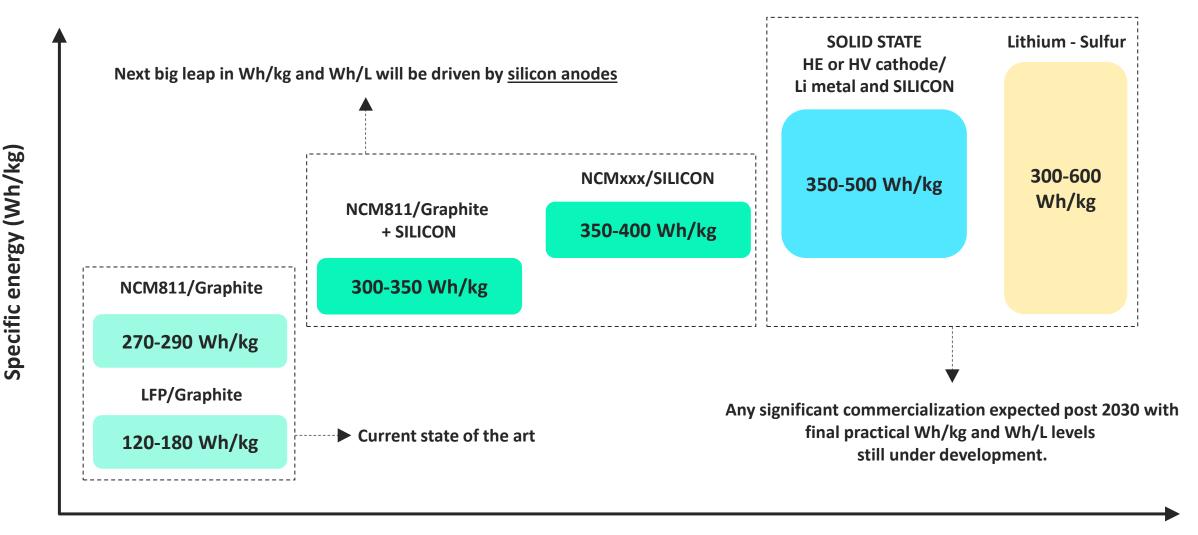
Anode: Lithium metal foil Cathode: Sulfur/carbon composite

Electrolyte: New formulations required **Separator:** Can be standard materials

📕 Anteo Tech

Lithium - Sulfur

19 July 2023



OXIS ENERGY Next Generation Battery Technology	Sion Power	 Most promising applications Low weight is key Space is available Cycle life is secondary 		
Energy cell (2016) 400 Wh/kg 310 Wh/L	Energy cell (2013) 350 Wh/kg 320 Wh/L	UAVs and Space Defense and Niche		
		Regional and urban air transport		
TTESLA	Next generation Lithium-ion	Large commercial air transport		
Energy cell 244 Wh/kg [*] 650Wh/L [*]	Advanced cells > 300 Wh/kg > 750Wh/L	Large commercial vehicles, electric bus and truck		

The future direction of lithium-ion batteries

AnteoTech

ENERGY TX3N

Manuel Wieser

manuel.wieser@anteotech.com

www.anteotech.com/energy

https://twitter.com/AnteoTech_