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Necker Hospital for Sick Children, Paris, France
77Walter and Eliza Hall Institute, Melbourne, Parkville, Australia
78CIRI (Centre International de Recherche en Infectiologie), Université de Lyon, Université
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Abstract

Patients with inborn errors of the alternative NF-κB pathway have low thymic AIRE expression, leading to the development of

auto-Abs neutralizing type I IFNs, and severe viral diseases.
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Abstract 

Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by 

autosomal recessive AIRE deficiency display autoantibodies (auto-Abs) neutralizing type I 

IFNs, conferring a predisposition to life-threatening COVID-19 pneumonia. We report that 

patients with autosomal recessive NIK or RelB deficiency, or a specific type of autosomal 

dominant (AD) NF-κB2 deficiency also display neutralizing auto-Abs against type I IFNs and 

are prone to life-threatening COVID-19 pneumonia. Among patients with AD NF-κB2 

deficiency, these auto-Abs are found only in heterozygotes with variants that are both 

transcriptionally loss-of-function (p52 activity), due to impaired p100 processing into p52, and 

regulatory gain-of-function (IκBδ activity), due to accumulation of unprocessed p100, thus 

increasing the inhibitory IκBδ activity (p52LOF/IκBδGOF). Conversely, neutralizing auto-Abs 

against type I IFNs are not found in individuals heterozygous for NFKB2 variants causing either 

p100 and p52 haploinsufficiency (p52LOF/IκBδLOF), or p52 gain-of-function (p52GOF/IκBδLOF). 

Unlike patients with APS-1, patients with disorders of NIK, RelB, or NF-κB2 harbor very few 

other auto-Abs. Their thymuses are however abnormally structured, and their medullary thymic 

epithelial cells (mTECs) have defective AIRE expression. Human inborn errors of the 

alternative NF-κB pathway impair thymic AIRE expression in mTECs, thereby underlying the 

production of auto-Ab against type I IFNs and predisposition to viral diseases.  

 

One-Sentence Summary: Patients with inborn errors of the alternative NF-κB pathway have 

low thymic AIRE expression, leading to the development of auto-Abs neutralizing type I IFNs, 

and severe viral diseases.   
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 Introduction 

Auto-antibodies (auto-Abs) neutralizing type I interferons (IFNs) were discovered in 

the early 1980s in patients treated with type I IFNs 1. Shortly after this discovery, they were 

also detected in patients with systemic lupus erythematosus (SLE), thymoma, or myasthenia 

gravis 2–4. These auto-Abs were widely thought to be clinically silent, with the notable 

exception of a 77-year-old woman with disseminated shingles reported in 1984 by Ion Gresser 

et al. 5. Nearly 40 years later, we showed, in an international cohort (www.covidhge.com), that 

pre-existing neutralizing auto-Abs to type I IFNs underlie at least 15% of cases of life-

threatening COVID-19 pneumonia 1,6–9, an observation that has since been replicated in various 

ways in at least 29 centers worldwide 1,8,10–36. These auto-Abs also underlie about one third of 

cases in a small series of patients with severe adverse reactions to yellow fever YFV-17D live-

attenuated viral vaccine 37. More recently, they were found in about 5% of patients aged under 

70 years of age with critical influenza pneumonia 38. Consistent with the 1984 case report, they 

also confer predisposition to shingles in patients with COVID-19 pneumonia 14 or with impaired 

T cell development due to biallelic hypomorphic RAG1 or RAG2 variants  39. Auto-Abs against 

type I IFNs underlie clinical phenocopies of inborn errors of type I IFN immunity, the same 

viral diseases have been reported in patients with autosomal recessive (AR) IFNAR1 or 

IFNAR2 deficiency 1,8. Plasma or serum (diluted 1/10) from patients with these auto-Abs can 

neutralize low (100 pg/mL) or high (10 ng/mL) concentrations of all 13 subtypes of IFN-α 

and/or IFN-ω, and, more rarely, IFN-β (10 ng/mL), evidenced by impaired STAT1 activation 

or induction of a reporter gene 6,7, or the cell protective effect of IFN-a2 against SARS-CoV-

2, YFV-17D, or influenza virus in vitro 6,37,38. These auto-Abs also impair the induction of IFN-

stimulated genes (ISGs) in peripheral blood mononuclear cells and nasal mucosae infected with 

SARS-CoV-2  ex vivo 6,40,41. Finally, these auto-Abs are also present in the general population 

6,9. The prevalence of neutralizing auto-Abs against IFN-β  (10 ng/mL) is about 0.2% across 
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age groups, whereas that of auto-Abs against IFN-α and/or IFN-ω is 0.3% (10 ng/mL) or 1% 

(100 pg/mL), in individuals under the age of 70 years old, rising to 4% (10 ng/mL) or 7% (100 

pg/mL) over 70 years old, thereby contributing to the age-related increase in the risk of severe 

COVID-19 6,9.  

Remarkably, the production of auto-Abs against type I IFNs can be driven by 

monogenic inborn errors of immunity (IEI). Only a handful of IEI to date have been shown to 

underlie the production of such antibodies 1. These IEI include 1) autoimmune polyendocrine 

syndrome type-1 (APS-1), also known as autoimmune polyendocrinopathy-candidiasis-

ectodermal dystrophy (APECED), which is caused by germline biallelic deleterious variants of 

AIRE, 2) immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, 

which is caused by deleterious hemizygous variants of FOXP3, and 3) combined 

immunodeficiency due to biallelic hypomorphic RAG1 or RAG2 variants 1. Some patients with 

autosomal dominant (AD) APS-1 can also develop these auto-Abs. A common feature of these 

IEI is that they affect the thymic selection of T cells, in a T cell-intrinsic or -extrinsic manner. 

For example, AIRE deficiency impairs the expression of tissue-specific antigens (TSAs) in 

medullary thymic epithelial cells (mTECs), allowing the escape of autoreactive T cells, whereas 

FOXP3 deficiency impairs the development of thymic regulatory T cells (Tregs) 42,43. 

Hypomorphic variants of RAG1 or RAG2 that are T cell-intrinsic have an impact on thymic 

architecture and the development of mTECs 44–46. The disruption of self-tolerance in the thymus 

therefore seems to underlie the production of auto-Abs against type I IFNs. APS-1 patients 

present a wide range of auto-Abs against TSAs, but the production of these auto-Abs only 

partially accounts for the many endocrine susceptibility phenotypes of these patients 42. APS-1 

patients also frequently harbor neutralizing auto-Abs against IL-17A and/or IL-17F which 

underlie chronic mucocutaneous candidiasis (CMC), a disease seen in patients with inborn 

errors of IL-17A/F immunity 47. Most, if not all (>95%) APS-1 patients  also produce auto-Abs 
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against type I IFNs in early childhood 48–51. These auto-Abs were thought to be silent when they 

were first discovered in APS-1 patients in 2006 51,52. However, it was discovered in 2021 that 

these antibodies render APS-1 patients highly vulnerable to critical COVID-19 pneumonia 

23,25,53–56, or, more recently, to severe varicella 57. 

In mice, expression of the AIRE gene in mTECs is controlled by the tumor necrosis 

factor receptor (TNFR)-family member RANK via the alternative (or non-canonical) NF-κB 

pathway 58–61. Activation of this pathway is tightly controlled and depends on TRAF6 and the 

NF-κB-inducing kinase (NIK), IKKα, NF-κB2, and RelB, which operate with slower activation 

kinetics than the classical NF-κB pathway 62. Once the alternative NF-κB pathway has been 

triggered by RANKL or other TNFR ligands such as CD40L, lymphotoxin α1β2 (Lt) or BAFF, 

NIK accumulates in the cytoplasm, activates IKKα, and phosphorylates the full-length NF-κB2 

precursor p100 (amino-acids 1-900) on serine residues S866 and S870 located within the NIK-

responsive sequence (NRS). This leads to p100 ubiquitinylation (K855) and processing by the 

26S proteasome to generate the active form, p52 (aa 1-405), which preferentially dimerizes 

with RelB in vivo via its REL homology domain (RHD) 62. This p52/RelB heterodimer migrates 

to the nucleus, where it induces transcription of target genes involved, notably, in lymphoid 

organ development, germinal center formation, B-cell survival, maturation, homeostasis, 

mTEC development, and osteoclastogenesis 62. In vitro, p52 can also form homodimers and act 

as a transcriptional repressor of the NF-κB cis-regulatory element (κB sites) when present in 

excess 63,64. Both p52 dependent transcriptional activity are later referred as p52 function. In 

resting cells, the processing inhibitory domain (PID) of p100 protects against the spontaneous 

processing and nuclear translocation of the p100 precursor. Unprocessed cytoplasmic p100 can 

form high molecular weight complexes by homo-multimerization (generating kappaBsomes) 

via its C-terminal IκB-like domain, thereby inhibiting the DNA-binding activity of almost all 

NF-κB subunits (this is referred to as IκBδ function) 65–67. In the mouse thymus, RANK and the 
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alternative NF-κB pathway, thus, play a crucial role in mTECs by governing self-tolerance 58,60. 

Moreover, cooperation between RANKL and CD40L is required for correct mouse mTEC 

development and for the concomitant expression of AIRE and TSA 60. Furthermore deficiencies 

of mouse Traf6, Ikkα, Nik, or RelB all impair both mTEC development and AIRE expression in 

mTECs 60,68. We therefore tested the hypothesis that human inborn errors of the alternative NF-

κB pathway — including AD NF-κB2 disorders, and AR RelB, IKK-α and NIK deficiencies 

— can underlie the production of auto-Abs against type I IFNs, thereby predisposing patients 

to severe viral diseases, including COVID-19 pneumonia 69–73.  No patients with inherited 

TRAF6 deficiency have ever been identified. Whereas the three inborn errors of the alternative 

NF-κB pathway are AR (NIK, RelB, and IKKα) and biochemically partial or complete, the 

mode of inheritance and the biochemical nature of AD NF-κB2 disorders are less well known 

74–77.  
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Results 

A cohort of patients with inborn errors of the alternative NF-kB pathway 

We investigated whether inborn errors of the alternative NF-κB pathway could underlie 

the presence of auto-Abs against type I IFNs, in an international cohort of 65 patients from 46 

kindreds heterozygous for 26 different rare (MAF< 0.0001) non-synonymous NFKB2 variants 

(Fig. 1A-B and Table SI). Most affected individuals had a predominant phenotype of antibody 

deficiency (PAD) (56/59, 94.9% of these patients) (Fig. 1A-B and Table SI). This cohort 

included 28 patients from 18 families with 12 NFKB2 variants reported in previous studies 

(Table SI). The condition was familial in 42 patients from 24 kindreds, and sporadic in 19 

patients (unknown in 4 patients) (Fig. 1A and Table SI). Consistent with AD inheritance, 

NFKB2 is under strong negative selection, with a CoNeS score of -1.6 78 and a high probability 

of being loss-of-function-intolerant (pLI of 1) (Fig. 1C and S1C). Nineteen variants (73%) 

clustered in a region corresponding to the C-terminal domain of the protein (CTD, aa 760-900) 

(Fig. 2A). These variants comprised 13 predicted loss-of-function (pLOF) variants, and six 

missense variants, five of which were predicted to affect the NRS (aa 861-871). This region, 

which is crucial for NIK-mediated phosphorylation and the processing of p100 to generate p52, 

is under particularly strong purifying selection, with a low missense tolerance ratio (MTR) 

score (Fig. S1B). Fifty-three patients from 37 kindreds carried 18 heterozygous variants in the 

CTD (pLOF, n=36 from 27 kindreds or missense, n=17 patients from 10 kindreds), including 

19 individuals from 13 kindreds with the recurrent R853* variant (Fig. 1A, Table SI). The 

recurrence of this variant probably reflects the existence of a mutational hotspot, as opposed to 

a founder effect, because this variant was previously detected in patients from nine different 

countries and was shown to have occurred de novo in six patients 79–84. The other 12 patients 

were heterozygous for NFKB2 variants in the Rel homology domain (RHD) (n=3 from 3 

kindreds; pLOF, n=2 and missense, n=1), or the ankyrin repeat domain (ARD) (pLOF, n=6 
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patients from 3 kindreds, and missense, n=3 from 3) (Fig. 2A). The consequence of the c.104-

1G>C/WT NFKB2 variant of patient P62, predicted to disrupt an essential acceptor splicing 

site, was evaluated by TOPO TA cloning on cDNA from T-cell blasts. About half the transcripts 

were abnormally spliced, mostly by a skipping of exon 4, and were predicted to encode a 

truncated protein (A35Efs*10), confirming the detrimental effect of the c.104-1G>C variant on 

the splicing of the NFKB2 mRNA (Fig. S1D). We also enrolled 14 patients with other inborn 

errors of the alternative NF-κB pathway (AR NIK (n=2) and AR RelB (n=8) deficiencies) or 

upstream receptors (AR BAFF (n=1) or XR-CD40L (n=3) deficiencies) (Fig. S1A, E and 

Table SII).  

 

Luciferase reporter assay testing the p52-dependent transcriptional activity of the 

NFKB2 alleles 

NF-κB2 (the corresponding NFKB2 gene encodes both p100 and its cleaved product, 

p52) is one of the five REL/NF-κB proteins. The active form, p52 can bind DNA, but, like NF-

κB1 (p105/p50), and unlike RelA, RelB, and cRel, it lacks a transcriptional activation domain 

(TAD). Its transcriptional activation, thus, requires heterodimerization with another TAD-

containing REL protein 65. The p52 protein predominantly dimerizes with RelB in vivo, but an 

excess of p52 can lead to p52/p52 homodimerization occurring in vitro, potentially repressing 

the κB-site transcriptional activity of other dimers though a dosage effect 63,64 (Fig. S2A). 

Whereas 23 NFKB2 variants have been reported in more than 80 patients with AD NF-κB2 

disorders have been reported, but only five of the these variants have been tested functionally. 

The E418* and R635* variants resulted in spontaneous nuclear translocation, while the R853*, 

S866R and A867Cfs*19 variants prevented processing of p100 to p52 85–87. However, these 

assays did not distinguish the two functions (p52 and IκBδ) of proteins encoded by the NFKB2 

locus. We therefore developed an assay for evaluating the functional impact of NFKB2 variants 



 
 

12 

by assessing κB luciferase activity 24 and 48 h after the cotransfection of HEK293T cells with 

plasmids encoding NIK, RelB, and/or NF-κB2/p100 (Fig. S2A).  Transfection with NIK alone 

or together with RelB led to strong RelA-dependent κB transcriptional activity in HEK293T 

cells, 24 to 72 hours after transfection, as only a weak luciferase signal was detected in RELA-

deficient HEK293T cells (Fig. S2B). With this assay, we were, therefore, able to assess the 

p52-dependent capacity of the NF-κB2 variants to bind the κB promoter and to prevent the 

transcriptional activity induced by endogenous RelA-containing dimers 63 (Fig. S2A). For the 

validation of this test, we generated plasmids encoding previously characterized biochemical 

NF-κB2 mutants (Fig. S2C), including a dimerization-defective NF-κB2 mutant (Y247A) 

shown to prevent heterodimerization with RelB or RelA and subsequent processing into p52 

67,88, and two processing-resistant NF-κB2 mutant (S866A and S870A) 67,89,90. Cotransfection 

with WT NFKB2 (p100) repressed the κB transcriptional activity induced by NIK and RelB, 24 

h and 48 h post-transfection (Fig. 2B and Fig. S2D, black bars). By contrast, in the same 

conditions, the repression of κB transcriptional activity by Y247A, S866A or S870A was 

impaired, indicating that these variants were p52LOF relative to the WT NF-κB2 89,91,92. Mutants 

truncated within the ARD (p100 1-455 or p100 1-665), had an enhanced capacity to repress κB 

transcriptional activity because they lack their last ANK repeats in the ARD and their PID (aa 

761-851), and were thus p52-gain-of-function (p52GOF), 24 h and/or 48 h after transfection 89. 

Biochemical mutants lacking the PID but with all their ankyrin (ANK) repeats intact (NF-κB2 

1-776), and variants with mutations of the ubiquitinylation residue (K855R) displayed a partial 

impairment of repression capacity (Fig. 2B, colored bars).  

 

NFKB2 variants can be LOF or GOF in terms of p52/p52 homodimer function  

We used this assay to evaluate the impact of 25 NFKB2 variants from our cohort of 

patients, and the 12 additional previously reported variants 93 (Fig. 2C and S2D-E). The three 
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RHD pLOF variants (c.104-1G>C/A35Efs*10, W270*, and K321Sfs*160 (referred to hereafter 

as K321Sfs)) were p52LOF (Fig. 2C and S2D). The E418* pLOF variant was p52GOF, as 

previously reported 85, 24 h but not 48 h after transfection. The four ARD pLOF variants lacking 

the PID 94 (L531Cfs*5, Q539*, R611*, and R635*) were p52GOF. All the CTD pLOF (n=16, 

from S762Afs*21 to Q871*) and missense variants located within the NRS (n=6, from D865G 

to S870N) were p52LOF (Fig. 2C and S2D). All seven additional missense variants (K321E, 

G369R, P491S, A567V, V661M, P681L, and V844A), reported in patients with PAD (probably 

due to another genetic lesion, referred to hereafter as ‘idiopathic PAD’), localized outside of 

the NRS, were isomorphic in terms of p52 inhibitory function (p52WT) at 24 h and 48 h after 

transfection (Fig. S2E-F). Finally, we tested the 14 missense variants with a MAF > 10-4 

reported in the heterozygous state in the gnomAD and BRAVO public databases (Fig. S1C). 

All these variants were p52WT at 24 h and 48 h after transfection (Fig. S2E-F). Overall, our 

findings show that the deleterious NFKB2 variants found in patients with PAD can be GOF or 

LOF in terms of the repression of transcription activity by p52/p52 homodimers, with RHD 

pLOF variants and CTD pLOF or missense variants within the NRS being p52LOF, pLOF 

variants impairing the ARD (E418* and pLOF variants located within the ARD) being p52GOF, 

while other missense variants (K321E, G369R, P491S, A567V, V661M, P681L, and V844A 

and variants found in the public databases with a MAF > 10-4) being p52WT. We inferred from 

these data that the transcriptional activity of p52-RelB heterodimers may follow the same 

pattern. 

 

 The p52LOF variants of the CTD resist the NIK-dependent processing of p100  

We then assessed the impact of NFKB2 variants on p100 activation, by analyzing the 

phosphorylation of this protein at position S866 (P-p100) using an antibody recognizing the 

phosphorylated serine 866 90, and its proteolytic cleavage to generate p52, following 
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cotransfection with NIK 89. The Y247A, S866A and S870A mutants abolished p100 processing, 

but only the S866A mutant abolished p100 phosphorylation (Fig. S2C). The truncated p52GOF 

mutants displayed an abolition of p100 phosphorylation. After 48h of transfection, the p52LOF 

W270* and K321Sfs variants of the RHD, and the E418* and the other p52GOF variants of the 

ARD (L531Cfs*5, Q539*, R611*, and R635*) had produced a truncated protein, with no P-

p100 or p52 production following cotransfection with NIK, contrasting with the results for the 

WT NFKB2 cDNA (Fig. 2D) 85. The 23 p52LOF variants of the CTD tested (the 17 pLOF and 6 

missense variants of the NRS) presented an impairment (Q871* and S870N) or abolition (the 

other 21) of p100 phosphorylation, and all were resistant to p100 processing, with no p52 

produced upon cotransfection with NIK (Fig. 2D). As expected, the 10 most frequent missense 

variants with a MAF>10-4 from public databases and shown above to be p52WT in terms of 

repressing transcriptional activity had normal P-p100 levels and p100 processing capacity (Fig. 

S2G). Overall, these findings suggest that the deleterious NFKB2 alleles can be p52LOF due to 

an impairment of normal p52 expression, because the p52 mutant protein is truncated or because 

p52 generation is impaired by p100 processing-resistance. Alternatively, they may be p52GOF, 

possibly due to constitutive p52 translocation and DNA-binding activity in the absence of a 

functional PID (Summarized in Fig. S2H and Table SIII). 

 

The processing-resistant p100 variants have enhanced IκBδ inhibitory capacities 

for repressing RelA-dependent canonical NF-κB activation    

We tested the hypothesis that monoallelic processing-resistant CTD variants may have 

IκBδ GOF activity (p52LOF/IκBδGOF) because their C-terminal region cannot be degraded by 

NIK, unlike that of the WT protein or variants affecting in the RHD or ARD (predicted IκBδLOF). 

The transfection of HEK293T cells with plasmids encoding NIK plus WT-NF-κB2 (aa 1-900), 

p52GOF R611*, or the p52LOF processing-resistant variants (R853* or S866N) resulted in similar 
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levels of repression of κB transcriptional activity, suggesting that this test evaluates the two in 

vitro repressive functions of NF-κB2 (p52-dependent, through p52/p52 homodimer DNA-

binding, and IκBδ-dependent, through cytoplasmic retention of the REL-containing NF-κB 

complexes) (Fig. S3A-B). In these conditions, W270* was null, consistent with its lack of both 

p52 and IκBδ functions (Fig. S3A). We specifically evaluated the IκBδ capacity of the WT and 

mutant p100 proteins to inhibit RelA-dependent transcriptional activity, by cotransfecting cells 

with a plasmid encoding NIK together with a plasmid encoding only the C-terminal WT or 

mutant region of NF-κB2 (p100-CterWT, aa 405-900). The p100-CterWT protein had no 

transcriptional repression activity in this system, consistent with its sensitivity to proteasomal 

degradation upon cotransfection with NIK (IκBδWT) (Fig. 3A). As expected, the CterR611* (aa 

405-611) protein did not repress κB transcriptional activity (IκBδLOF), confirming the 

specificity of this assay for evaluating NF-κB2 IκBδ function. By contrast, the CterR853* (aa 

405-853) and CterS866N (aa 405-900) mutants, which were insensitive to proteasomal 

degradation upon cotransfection with NIK, repressed κB transcriptional activity strongly 

(IκBδGOF). For confirmation of the IκBδGOF activity of the R853* and S866N variants, we used 

the dimerization-defective and processing-resistant NF-κB2 mutant (Y247A) to create double 

mutants. Co-transfection of NIK with simple mutant (p100Y247A), or even more, with 

p100R853*/Y247A or p100S866N/Y247A double mutant resulted in an enhanced capacity to repress κB 

transcriptional activity relative to transfection with NIK alone, or with p100W270*/Y247A or 

p100R611*/Y247A (Fig. 3B). Thus, processing-resistant CTD variants are IκBδGOF 

(p52LOF/IκBδGOF) in terms of transcriptional repression in the RelA-dependent canonical NF-

κB pathway following cotransfection with NIK, whereas W270* and R611* are IκBδLOF 

(p52LOF/IκBδLOF and p52GOF/IκBδLOF, respectively). 

 



 
 

16 

The processing-resistant IκBδGOF CTD NF-κB2 variants impair WT NF-κB2- and 

RelB-dependent alternative NF-κB activation    

We then investigated whether the p52LOF/IκBδGOF variants impaired the activation of 

WT NF-κB2 or RelB. Cotransfection with various amounts of the p52LOF/IκBδGOF R853* or 

S866N and constant amounts of NIK and WT p100 revealed a dose-dependent inhibition of 

WT p100 phosphorylation and, to a lesser extent, of its processing to generate p52 (Fig. 3C). 

By contrast, increasing the amount of p52LOF/IκBδLOF W270* cDNA had no effect on WT P-

p100 levels or WT p100 processing (Fig. 3C). We then assessed the effects of the 

p52LOF/IκBδGOF variants on RelB and p52 nuclear translocation, by confocal microscopy in 

transiently transfected HeLa cells. Transfection with the p52LOF/IκBδLOF K321Sfs or 

p52GOF/IκBδLOF R611*, with or without NIK, resulted in constitutive nuclear localization of the 

encoded protein, consistent with the absence of a nuclear export sequence (NES) 95 (Fig. S3C). 

Transfection of RelB, either alone or together with the IκBδLOF K321Sfs or R611*, led to the 

translocation of RelB to the nucleus (Fig. 3D, left panel). By contrast, transfection of RelB with 

WT p100, R853*, or S866N, in the absence of NIK, resulted in an absence of RelB translocation 

to the nucleus, consistent with the functional p100-IκBδ activity of these proteins  (Fig. 3D, left 

panel). Addition of NIK to this system led to RelB translocation to the nucleus after 

cotransfection with WT-p100, but not with the IκBδGOF R853* or S866N proteins (Fig. 3D, 

right panel). Similar results were obtained with plasmids encoding the WT or mutant C-terminal 

domain of NF-kB2 (Fig. S3D). Overall, our findings suggest that the p52LOF/IκBδGOF mutant 

alleles block activation of the alternative NF-κB pathway induced by NIK through their 

enhanced IκBδ function, by preventing the phosphorylation of WT-p100 and its processing into 

p52, and the nuclear translocation of RelB-containing dimers.  

 

The p52LOF/IκBδGOF variants impair p100 processing in heterozygous fibroblasts  
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We then investigated the consequences of the p52LOF/IκBδGOF variants in stromal 

(primary and SV-40-immortalized fibroblasts) and hematopoietic (T-cell blasts and monocyte-

derived dendritic cells (MDDCs) cells from patients following the activation of the alternative 

NF-κB pathway by Lt, TWEAK (fibroblasts), or CD40L (leukocytes) 62,96. Cells heterozygous 

for the p52LOF/IκBδGOF R853* allele produced a truncated protein, whereas cells heterozygous 

for the p52LOF/IκBδLOF c.104-1G>C/A35Efs*10 or K321Sfs variant produced no mutant 

protein detectable with an antibody binding to the N-terminus of the protein (Fig. 3E and Fig. 

S3E-G). Primary fibroblasts from a healthy control stimulated with Lt for 48 h displayed p100 

phosphorylation and processing to generate p52 (Fig. 3E). By contrast, primary fibroblasts from 

a patient heterozygous for the p52LOF/IκBδGOF R853* presented an accumulation of the 

truncated p100 mutant protein after Lt stimulation, with lower levels of WT p100, P-p100 and 

p52 induction than WT cells or cells heterozygous for the p52LOF/IκBδLOF K321Sfs (P-p100 in 

particular). Similarly, primary fibroblasts from a patient with AR complete NIK deficiency 

(NIK-/-, homozygous for P565R 74) presented an accumulation of unprocessed p100 following 

Lt stimulation, with an abolition of p100 phosphorylation, and no p52 production, consistent 

with the essential role NIK in p100 processing, whereas RelB-deficient fibroblasts (RelB-/-, 

homozygous for Q73Tfs*152, unpublished) had low levels of P-p100 and p100 following 

stimulation with Lt, with a normal p100 processing capacity (Fig. 3E). An accumulation of the 

truncated p100 mutant protein and  an impaired p100 processing into p52 were also observed 

in SV-40-transformed fibroblasts (from R853*/WT, n=1) after Lt stimulation, and in MDDCs 

(from R848Efs*38/WT (n=1) or R853*/WT (n=1) patients) 48 h after CD40L stimulation, 

relative to WT or K321Sfs/WT cells (Fig. S3E and G). Given the impairment of p100 

processing and the accumulation of the mutant p100 upon stimulation of the non-canonical 

pathway, the p100/p52 ratio was higher in cells from patients heterozygous for a 
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p52LOF/IκBδGOF variant (primary and SV-40-transformed fibroblasts and MDDCs) than in cells 

from healthy donors or the patient with K321Sfs/WT (Fig. 3E and S3E and G). 

 

The p52LOF/IκBδGOF variants impair the translocation of p52- and RelB-containing 

dimers into the nucleus in heterozygous fibroblasts  

We then evaluated the consequences of the p52LOF/IκBδGOF variants in terms of RelB 

and p52 activation in cells from heterozygous patients. The activation of primary or SV-40-

transformed control fibroblasts by incubation with TWEAK for 48 h induced the processing of 

p100 to generate p52, and the induction and translocation to the nucleus of RelB and p52 (Fig. 

3F and S3H-I). Almost no RelB or p52 translocation to the nucleus was detected after TWEAK 

stimulation in primary fibroblasts from an R853*/WT patient (Fig. 3F and S3I). Similarly, no 

RelB or p52 was detected in the nucleus of primary fibroblasts from patients with AR complete 

NIK (NIK-/-) or RelB deficiency (RelB-/-) after TWEAK stimulation. By contrast, K321Sfs-

heterozygous primary fibroblasts displayed almost normal RelB induction and nuclear 

translocation after Lt stimulation. Almost no RelB translocation was detected in SV-40-

transformed fibroblasts from two unrelated R853*/WT patients or a NIK-/- patient, but was 

normal in these cells heterozygous for the K321Sfs NFKB2 variant (Fig. S3J). Similar results 

were obtained in MDDCs from two healthy controls, and from patients heterozygous for the 

p52LOF/IκBδLOF K321Sfs or the c.104-1G>T, or p52LOF/IκBδGOF R853* variant, after 

stimulation with CD40L (Fig. S3K). Overall, these findings suggest that heterozygosity for a 

p52LOF mutant allele can cause NF-κB2 deficiency by two different mechanisms: (1) p52/p100 

haploinsufficiency for p52LOF/IκBδLOF mutants, or (2) enhanced p100-IκBδ inhibitory function 

(p52LOF/IκBδGOF) impairing phosphorylation of the WT p100 and its processing, and preventing 

the translocation of RelB-containing dimers to the nucleus after activation of the alternative 

NF-κB pathway.   
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Distinctive immunological phenotype of patients with p52LOF/IκBδGOF variants  

We assessed the immunological phenotype of patients with the three types of NFKB2 alleles 

(p52LOF/IκBδLOF, p52GOF/IκBδLOF, and p52LOF/IκBδGOF). Most patients with inborn errors of 

NF-κB2 (aged 1-75 years) had low serum concentrations of IgG, IgM and IgA, and few, if any 

circulating B cells (25/33 after the age of 15, 75%) (Fig. S4A-B). None of these patients were 

treated by B-cell depletion therapy. B-cell deficiency was also observed in the three patients 

with the R635* p52GOF/IκBδLOF variant tested (aged 20, 47, and 75 years) and in the patient 

with the K321Sfs p52LOF/IκBδLOF variant (aged 65 years) (Fig. S4B). We performed a deep 

immunological analysis in 12 patients with inborn errors of NFKB2 (p52LOF/IκBδGOF, n=10, 

and p52LOF/IκBδLOF, n=2), by cytometry by time of flight (CyTOF) on fresh whole blood 

samples (Fig. 4A). Ten of the 12 patients tested had low circulating B-cell counts, with a low 

counts and proportions of switched memory B cells (Fig. 4B and S4C). FlowSOM-guided 

unsupervised clustering showed that p52LOF/IκBδGOF mutants mostly affected the CD19+CD27+ 

memory B-cell compartment, relative to healthy donors (HDs) and a patient with 

p52LOF/IκBδLOF variants (metaclusters 03, 04, 05, 06 and 12, p<0.005) (Fig. 4C and S4D). The 

numbers of total lymphocytes, CD4+ and CD8+ T and γδ T cells were within the normal ranges 

with p52LOF/IκBδLOF or p52LOF/IκBδGOF variants (Fig. S4E). In analyses of T-cell subsets, 

patients with p52LOF/IκBδGOF variants had more naïve CD4+ T cells than controls and patients 

with p52LOF/IκBδLOF variants (Fig. S4F). Proportion of CD4+ recent emigrant thymic (RTE) 

cells, defined as CD4+CD45RA-CD31+, was in the upper part of the normal range for age-

matched controls in patients with p52LOF/IκBδGOF variants, suggesting that thymic output was 

similar to or higher than that in patients with p52GOF/IκBδLOF and p52LOF/IκBδLOF variants 97 

(Fig. S4F). The absolute numbers and proportions of CD4+CD25+CD127- regulatory T cells 

(Tregs) were significantly lower in patients with p52LOF/IκBδGOF variants than in age-matched 
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HDs, but their absolute number was comparable to the two patients with p52LOF/IκBδLOF variant 

(Fig. 4D and Fig. S4G). By contrast, four patients carrying the p52GOF/IκBδLOF R635* allele 

(reported in 85) had normal proportions of Tregs (Fig. S4G). Patients with p52LOF/IκBδGOF 

variants had significantly lower proportions of CD4+CD45RA+CXCR5+ T follicular helper (Tfh) 

cells than patients with p52LOF/IκBδLOF variants and healthy controls, despite having normal 

memory CD4+ T-cell counts (Fig. 4E and S4H). Patients with p52LOF/IκBδGOF variants had 

slightly low NK cell counts, with normal MAIT and iNKT cell counts (Fig S4I), and normal 

monocyte and dendritic cell counts (Fig S4J). Overall, patients heterozygous for a 

p52LOF/IκBδGOF variant had a distinctive immunological phenotype different from that of 

patients with p52LOF/IκBδLOF or p52GOF/IκBδLOFvariants, including a characteristic 

combination of low levels of memory B cells, cTfh cells, and Tregs.   

 

Distinctive clinical phenotype including viral susceptibility in patients with 

p52LOF/IκBδGOF variants 

We then assessed the clinical phenotype and infectious susceptibility associated with the 

three types of inborn errors of NF-κB2. PAD (association of hypogammaglobulinemia and 

recurrent bacterial respiratory tract infections 98) was reported in most patients with 

p52LOF/IκBδGOF variants (n=49/51, 96%), and in more than half the patients with 

p52LOF/IκBδLOF (n=3/5) or p52GOF/IκBδLOF (n=4/6) variants (Fig. 4F). Auto-immune disease 

was reported in about a third of patients with p52LOF/IκBδGOF (n=21/51) or p52LOF/IκBδLOF 

(n=2/5) variants and in one patient with p52GOF/IκBδLOF (Table SI). By contrast, ectodermal 

dysplasia (sparse hair, eyebrows, or eyelashes, or nail dysplasia, with or without alopecia areata 

or totalis) and anterior pituitary hormone deficiencies were reported exclusively in patients 

carrying p52LOF/IκBδGOF variants, occurring in 29% of cases (n=15/51), each (Fig. 4F). 

Similarly, severe or recurrent viral diseases were mostly reported in patients carrying 
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p52LOF/IκBδGOF variants (n=29/51, 56.9%) (Fig. 4G). This viral susceptibility could not be 

explained by immunosuppressive treatments (used in 7 patients with p52LOF/IκBδGOF variant). 

The main viral disease reported was recurrent mucocutaneous HSV-1 lesions (n=20/51, 39%), 

with extensive skin lesions observed in two of the patients affected 99 (Fig. 4G). Six of the nine 

unvaccinated patients, and two patients with an unknown vaccination status, with 

p52LOF/IκBδGOF variants developed hypoxemic COVID-19 pneumonia (NIH scale 5-8 out of 8) 

after being infected with SARS-CoV-2. Three of these patients, aged 17, 23, and 39 years, were 

admitted to intensive care with two individuals succumbing (aged 23 and 39) 69,70 (Fig. 4H). 

One patient was hospitalized for COVID-19 pneumonia without requiring oxygen 

supplementation (NIH scale 4). Six additional unvaccinated patients developed asymptomatic 

disease or mild symptoms (NIH scale 1-2) without pneumonia or hospitalization. These patients 

carried a p52LOF/IκBδGOF (n=2, aged 7 and 22 years), p52GOF/IκBδLOF (n=2, aged 20 and 49 

years), or neutral (n=2, aged 30 and 31) NF-κB2 variant (Fig. 4H). COVID-19 severity was not 

associated with age or treatment (Fig. 4I and Table SI). Severe influenza pneumonia was 

reported in n=6/51 patients with p52LOF/IκBδGOF variant (12%), four of whom required 

hospitalization and oxygen supplementation, including one patient with acute respiratory 

distress syndrome (ARDS) and encephalitis (Fig. 4G). Three patients suffered from recurrent 

(n=1) or severe (n=2) varicella. The two patients with severe varicella were both hospitalized, 

one with encephalitis and the other with severe skin disease requiring acyclovir. The other 

severe viral diseases observed are indicated in Table SI. None of the patients were vaccinated 

with yellow fever YFV-17D live-attenuated vaccine. All eight of the patients with inborn errors 

of NF-κB2 who died carried a p52LOF/IκBδGOF variants. Six of these patients died from 

suspected or proven viral illnesses, including two from COVID-19. Together, these findings 

suggest that, unlike patients with the other two forms of inborn errors of NF-κB2, patients with 

p52LOF/IκBδGOF variants present a distinctive syndrome, previously called DAVID syndrome 
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(immunodeficiency with hypogammaglobulinemia, plus central pituitary deficiency 79), which 

is strongly associated with the risk of developing PAD and/or a severe viral disease. Conversely, 

p52/p100 haploinsufficiency and p52GOF may underlie humoral deficiency with variable 

clinical and immunological penetrance, whereas these conditions do not appear to underlie 

ectodermal, endocrine, or viral phenotypes 100. The milder clinical phenotype associated with 

these forms may account for the smaller number of patients with such defects identified. 

 

 Auto-Abs against type I IFNs are exclusively associated with p52LOF/IκBδGOF 

variants  

 We assessed the presence of auto-Abs against type I IFNs in the plasma of 65 patients 

heterozygous for a deleterious (p52LOF/IκBδLOF, n=2; p52GOF/IκBδLOF, n=6; p52LOF/IκBδGOF, 

n=51) or neutral (idiopathic PAD, n=6) NFKB2 variant. We detected high titers (absolute units, 

A.U. >50) of anti-IFN-α2 IgG in 29/50 (58%) patients with p52LOF/IκBδGOF variants, 41/45 

(91%) patients with APS-1, but none of those carrying p52LOF/IκBδLOF or p52GOF/IκBδLOF 

alleles, or with idiopathic PAD (Fig. 5A). In addition, patients with p52LOF/IκBδGOF variants 

and auto-Abs against IFN-α2 also had detectable auto-Abs against most of the 13 IFN-α 

subtypes and IFN-ω, but not against IFN-β, IFN-κ, and IFN-ε, as evaluated with the HuProt 

array (Fig. 5B) and multiplex beads assay (Fig. S5A). We then assessed the neutralization 

capacity of the plasma in a luciferase interferon-stimulated response element (ISRE) reporter 

assay in the presence of high (10 ng/mL) or low (100 pg/mL) concentrations of IFN-α2, IFN-

ω, or IFN-β (10 ng/mL) 6. Overall, 33/51 (65%), 28/51 (55%) and 4/51 (8%) patients with 

p52LOF/IκBδGOF variants neutralized high concentrations of IFN-α2, IFN-ω and IFN-β, 

respectively (Fig. S5B-D), and 37/51 (73%) and 39/51 (76%) neutralized low concentrations 

of IFN-α2 or IFN-ω, respectively (Fig. 5C, D and S5E). For comparison, 41 (91%), 43 (96%), 

and 1 (2%) of the 45 APS-1 patients neutralized IFN-α, IFN-ω, and IFN-β, respectively, at a 
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concentration of 10 ng/mL (Fig. S5B, C), and serum from all these patients neutralized IFN-α2 

and/or IFN-ω at a concentration of 100 pg/mL (Fig. S5C, D and S5F). By contrast, none of the 

plasma samples from any of the patients with p52LOF/IκBδLOF (n=2), p52GOF/IκBδLOF (n=6), or 

neutral NFKB2 variants (n=6) neutralized IFN-α2, IFN-ω, or IFN-β (at 10 ng/mL or 100 pg/mL). 

The proportion of p52LOF/IκBδGOF patients carrying auto-Abs was higher among those carrying 

pLOF variants than among those carrying missense variants (Fig. S5G) but was independent 

of patients age at testing (p=0.6) or sex (Fig. S5H). Plasma samples from 80% (41/51) of the 

patients with a p52LOF/IκBδGOF variant neutralized IFN-α2 and/or IFN-ω, including two patients 

whose plasma neutralized only IFN-α2, four whose plasma neutralized only IFN-ω, and three 

whose plasma neutralized IFN-α2, IFN-ω and IFN-b (Fig. S5E). Overall, we found a strong 

association between NFKB2 genotype (p52LOF/IκBδGOF) and the presence of anti-type I IFN 

auto-Abs (Fig. 5I).  

 

Neutralizing auto-Abs against type I IFNs in patients with NIK or RelB deficiency  

We then investigated the presence of auto-Abs against type I IFNs in patients with other 

inborn errors of the alternative NF-κB pathway (AR complete NIK deficiency (n=2 from 2 

kindreds 74 and unpublished); AR partial (n=4 from 2 kindreds) or complete (n=4 from 2 

kindreds) RelB deficiency 74–76,101,102 and unpublished results), or the related TNFR (AR 

complete BAFFR deficiency (n=1 101); or XR partial CD40L deficiency (n=3 from 3 kindreds 

(unpublished)). No plasma from AR IKK-α deficient patients was available. Neutralizing auto-

Abs against type I IFNs were detected in the two patients with complete AR NIK deficiency 

(both sampled after hematopoietic stem cell transplantation (HSCT)). In one of these patients, 

the detected auto-Abs neutralized IFN-α2 and IFN-ω at a concentration of 10 ng/mL, whereas, 

in the other, they neutralized IFN-α2 at 10 ng/mL and IFN-ω at 100 pg/mL (Fig. 5F-H and 

S5J-L). Auto-Abs neutralizing type I IFNs were also detected in patients with AR RelB 
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deficiency (n=5/8), including auto-Abs neutralizing IFN-α2 and IFN-ω at 10 ng/mL in two 

patients, and auto-Abs neutralizing IFN-α2 and/or IFN-ω at 100 pg/mL in three patients, all 

tested pre-HSCT (Fig. 5F-H). By contrast, no neutralizing auto-Abs against type I IFNs were 

detected in patients with AR BAFFR or XL-CD40L deficiency, or in plasma from heterozygous 

relatives of patients with AR RelB deficiency (n=8) (Fig. 5F-H and S5J-K). Finally, we tested 

eight patients with AD NF-κB1 haploinsufficiency 103, and 29 additional patients with 

deleterious mutations of eight different canonical NF-κB pathway-related genes (REL, RELA, 

IKBKB, IKBKG, NFKBIA, HOIL1, CARD11, MALT1) 104. All tested negative for neutralizing 

auto-Abs against type I IFNs (Fig. S5M-N). As HSCT procedures do not cure thymic stromal 

cells, we wondered whether neutralizing auto-Abs against type I IFNs could appear post-

transplantation in the four patients without neutralizing auto-Abs before transplantation (AR 

cRel, n=1, and AR RelB, n=3). Neutralizing auto-Abs against type I IFNs were detected in two 

of the three patients with AR RelB deficiency (Q73Tfs*152 and Y397*) 6 and 2.5 years post-

transplantation, whereas no such auto-Abs were detected in the patient with AR cRel deficiency 

for up to 13 months after HSCT (Table SV). They were also detected in the plasma from one 

patient with p52LOF/IκBδGOF variant post-transplant (P60). These results suggest that inborn 

errors of RelB, NIK, and NF-κB2 from the alternative NF-κB pathway underlie the 

development of neutralizing auto-Abs against type I IFNs, even after HSCT, whereas defects 

of the canonical NF-κB pathway do not. The alternative NF-κB pathway therefore appears to 

be essential to prevent the generation of auto-Abs against type I IFNs. 

 

Narrow spectrum of auto-Abs in patients with inborn errors of the alternative NF-

κB pathway  

We then search for the presence of auto-Abs against other proteins using a panel of  

~20,000 full-length human proteins (the Human Proteome Array, HuProt 105)  in patients with 
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inborn errors of the alternative NF-κB pathway with (n=15) or without (n=9) auto-Abs against 

type I IFNs (p52LOF/IκBδGOF (n=8 and 5), AR RelB (n=5 and 3) and AR NIK deficiency (n=2 

with auto-Abs)), conditions not associated with these auto-Abs (p52LOF/IκBδLOF (n=1)) and 

healthy controls (n=22). The IFN-α subtypes and IFN-ω were among the autoantigens with the 

highest level of enrichment in the 13 patients with p52LOF/IκBδGOF tested relative to control 

plasma (log2-fold change >1.8) (Fig. 5J and S5O). This enrichment was specific to the IFN-α 

subtypes and IFN-ω, but not other type I IFNs (IFN-b, IFN-κ, or IFN-ε) or type III IFNs (Fig. 

5J). In contrast to type I IFNs, most other enriched antigens in patients with p52LOF/IκBδGOF, 

identified by HuProt, were not detected by multiplex bead assay (Fig. S5A,O). In addition, 

most of the auto-Abs directed against TSA or cytokines (including IL-17A, IL-17F, IL-22 and 

type III IFNs) previously reported in patients with APS-1 were not detected in plasma from 

patients with inborn errors of NF-κB2, NIK and RelB by HuProt or beads assay 105–107 (Fig. 

S5Q-S). No pituitary, skin, or other tissue-specific autoantigens were detected with this assay. 

This unbiased approach showed that auto-Abs neutralizing the 13 IFN-α subtypes and IFN-ω 

were the principal disease-associated auto-Abs in patients with inborn errors of the alternative 

NF-κB pathway.  

  

Incomplete penetrance for the development of neutralizing auto-Abs against type 

I IFNs in patients carrying a p52LOF/IκBδGOF variant 

For 10 of the 51 (20%) patients carrying p52LOF/IκBδGOF variants, no auto-Abs against IFN-α2 

or IFN-ω at 100 pg/mL, or against IFN-b (at 10 ng/mL) were detected. Plasma from these 

patients did not neutralize any of the 13 IFN-α subtypes at 1 ng/mL, contrasting with the 

findings for other patients with p52LOF/IκBδGOF variants, AR RelB, or AR NIK deficiency, 

whose plasma neutralized IFN-α2 at a concentration of 10 ng/mL (Fig. S5T). None of them 

reported a severe or recurrent viral disease. Most of the patients who lacked neutralizing auto-
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Abs against type I IFNs carried the A867V variant (n=7/10). They were from two countries 

(French, n=2 kindreds; Australian, n=2 kindreds) and were aged 11 to 51 years at testing. Three 

other patients carrying the same A867V variant had neutralizing auto-Abs against type I IFNs, 

with the auto-Abs from two of these patients neutralizing only IFN-ω at 100 pg/mL. Two 

additional unrelated patients carrying the recurrent R853* p52LOF/IκBδGOF variants (of the 18 

patients with R853*), aged 17 and 61 years at testing, and one with the K855Sfs*7 variant (aged 

47 years) did not have detectable neutralizing auto-Abs against type I IFNs. None of these 

patients received immunosuppressive treatment. Age or sex ratio was not statistically different 

in patients with a p52LOF/IκBδGOF variants with or without neutralizing auto-Abs to type I IFNs 

(ratio F/M 1.2 (23/18) and 1 (5/5), respectively). These findings suggest that the penetrance of 

type I IFN auto-Abs in p52LOF/IκBδGOF variant carriers is high (~80%), but not complete by the 

age of 61 years, especially in patients heterozygous for the A867V variant. 

 

Susceptibility to severe viral diseases and COVID-19 is strongly associated with 

neutralizing auto-Abs against type I IFNs  

We then hypothesized that the viral susceptibility reported in the patients with inborn errors 

of the alternative NF-κB pathway, including COVID-19, might be at least partly explained by 

the presence of neutralizing auto-Abs against type I IFNs. All the patients (n=29) with 

p52LOF/IκBδGOF variants and severe viral infections had neutralizing auto-Abs against type I 

IFNs, including all those with severe form of COVID-19, influenza, VZV, or recurrent HSV-1 

disease (Fig. 6A). Furthermore, at least one episode of severe or recurrent viral disease was 

reported in 29 of the 41 (71%) p52LOF/IκBδGOF patients with neutralizing auto-Abs against type 

I IFNs, but not in those without such antibodies. Other than for viral, there were no strong 

clinical or immunological differences between p52LOF/IκBδGOF patients with and without 

neutralizing auto-Abs against type I IFNs (Fig. 6B-C). Two of the eight patients with AR RelB 
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deficiency developed a severe viral disease (varicella pneumonia n=2 and PML, n=1), and both 

had auto-Abs neutralizing IFN-α and IFN-ω (Table SII). All seven patients with 

p52LOF/IκBδGOF variants who developed COVID-19 pneumonia during the pre-vaccination 

period had neutralizing auto-Abs against both IFN-α2 and IFN-ω, and suffered critical (n=4), 

severe (n=2), or moderate (n=1) COVID-19 pneumonia (Fig. 4H and Table SIV). Plasma 

samples collected from two of these patients before SARS-CoV-2 infection neutralized IFN-α2 

and IFN-ω at a concentration of 10 ng/mL. These samples were collected up to 16 years before 

COVID-19, demonstrating that these neutralizing auto-Abs were present before infection and 

were not, therefore, triggered by SARS-CoV-2 infection (Fig. S6A). Two other patients were 

infected without developing pneumonia or requiring hospitalization: one 22-year-old patient 

with auto-Abs neutralizing only IFN-ω at the lowest dose of 100 pg/mL (P5, S762Afs*21/WT) 

and one seven-year-old patients with auto-Abs neutralizing both IFN-α2 and IFN-ω at a 

concentration of 10 ng/mL (P38, G869Vfs*18/WT) (Fig. 6D-E). The four infected patients 

without auto-Abs against type I IFNs received ambulatory care and did not develop pneumonia. 

They are heterozygous for neutral (A567 and V661M) variants or for the Q539* 

p52GOF/IκBδLOF variant (n=2) (Fig. 6D-E and S6B). In addition, 8 patients with a 

p52LOF/IκBδGOF variant and pre-existing auto-Abs against type I IFN encountered SARS-CoV-

2 following vaccination (corresponding to the omicron period, from October 2021 to February 

2022) (Fig. S6C). They received anti-SARS-CoV-2 monoclonal antibodies infusion (n=4, with 

sotrovimab (n=3), tixagevimab/cilgavimab (n=1)) or remdesivir (n=1) and/or recombinant IFN-

ß (n=2) in addition to their IVIg supplementation (n=8). All these patients reported 

asymptomatic to moderate (NIH scale 1-4) COVID-19 without pneumonia (Fig. S6D and 

Table SIV). P3 who developed a critical COVID-19 during the first wave of SARS-CoV-2 

pandemic developed an ambulatory disease (NIH score 2) after vaccination and therapeutic 

infusion of sotrovimab. The two patients with a p52LOF/IκBδLOF (P43 and P62) and three with 
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a p52GOF/IκBδLOF variant (P39, P40 and P41) without auto-Abs against type I IFNs had 

ambulatory disease. Overall, these results indicate that auto-Abs against type I IFNs are 

clinically significant, underlying severe forms of COVID-19 pneumonia and, probably, other 

severe viral diseases, including influenza pneumonia and severe varicella.  

 

IFN-b-dependent ISG induction in vivo in patients with auto-Abs against IFN-α and/or 

IFN-ω  

Neutralizing auto-Abs against type I IFNs have been shown to impair the induction of ISGs 

in PBMCs and nasal mucosa during COVID-19 6,40,41. We monitored the disease caused by 

infection with the B.1.529 variant (omicron) of SARS-CoV2 in two patients (P27 and P28) 

carrying the R853Afs*30/WT p52LOF/IκBδGOF variant. Prior to the infection, both patients had 

received three injections of Pfizer-BioNTech mRNA vaccine, one of whom (P28) subsequently 

developed detectable IgG directed against the spike protein (anti-S). Both patients received 

recombinant IFN-β (as their auto-Abs did not neutralize IFN-b at 10 ng/mL) and anti-spike 

mAb (sotrovimab in P27 and tixagevimab/cilgavimab in P28) within the first four days after 

symptom onset. Both experienced a mild form of COVID-19 without pneumonia or a need for 

oxygen supplementation. We performed longitudinal assessments, from day 2 to day 27, of 

SARS-CoV-2 viral load and type I IFN response, by determining IFN score (quantifying four 

type I/III IFN-dependent ISGs by NanoString 41) on whole blood and nasal swabs, and by 

performing RNA-seq on whole blood (Fig. S6E). Within the first few days of symptoms, 

infection with the SARS-CoV2 B.1.529 variant led to a high IFN score for whole blood and the 

upper respiratory tract in individuals with mild COVID-19 without auto-Abs against type I IFN 

(Fig. 6F-G and 41). By contrast, P27, whose plasma neutralized high concentrations of all 13 

IFN-α subtypes plus IFN-ω, and P28, whose plasma neutralized high concentrations of all 13 

IFN-α subtypes but not IFN-ω, had negative or weakly positive blood and nasal IFN scores, 
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respectively, despite having a nasal SARS-CoV-2 viral load similar to that in the individuals 

without auto-Abs (Fig. 6F, G and S6F). The neutralizing activity of the auto-Abs of P27 

against IFN-α2 and IFN-ω was also demonstrated in the respiratory tract (Fig. S6G). The 

injection of recombinant IFN-β from day 4 after the onset of the symptoms led to a high nasal 

and whole-blood IFN score, which increased to the levels observed in individuals with mild 

COVID-19 and no auto-Abs against type I IFNs (Fig. 6G). RNA-seq on whole-blood samples 

from the two patients showed an impaired induction of ISGs four days after symptom onset 

relative to two age-matched controls with mild COVID-19 but comparable SARS-CoV-2 viral 

loads (Fig. 6H and S6I). Three to four days after IFN-β and anti-spike mAb infusion, the ISG 

module scores increased, with the expression of these genes becoming undetectable by day 13 

post-treatment, once viral replication was controlled (Fig. 6H and Fig. S6I). Thus, auto-Abs 

against IFN-α and IFN-ω can block type I IFN signaling in vivo in the blood and upper 

respiratory tract, and ISG induction can be rescued by exogenous IFN-b treatment, which might 

have contributed to the favorable clinical outcome in these patients.  

 

Impaired mTEC development and AIRE thymic expression in patients with 

p52LOF/IκBδGOF variants and AR RelB deficiency  

In mice, mTEC development and AIRE expression are dependent on the alternative NF-κB 

pathway, via NIK and RelB 58–60. Consequently, Relb- and Nik-deficient mice, and mice 

heterozygous for a p52LOF/IκBδGOF variant display thymic hypoplasia with weak medullary 

thymic formation, impaired mTEC AIRE expression, and tolerance breakdown 60,108–111. In 

human fetal thymuses, NFKB2 and RELB transcripts are highly abundant in AIRE+ mTECs 112. 

However, the impact on AIRE expression of deleterious variants affecting the alternative NK-

κB pathway remains unknown. We hypothesized that patients with inborn errors of NIK, RelB, 

or NF-κB2 develop auto-Abs against type I IFNs due to insufficient AIRE expression in the 
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thymus. We first analyzed the thymic volume of patients with p52LOF/IκBδGOF variants (n=9) 

aged 4 to 16 years, by comparing the CT-scans of these patients with those of age-matched 

controls with conditions unrelated to immunity. Patients with p52LOF/IκBδGOF variants had a 

smaller global thymic volume than the controls (Fig. 7A). We then analyzed a thymic biopsy 

specimen from a patient of with complete AR RelB deficiency (mutation Y397*/ Y397*, P2 

from ref 75, aged 1 year-old) and a patient with a p52LOF/IκBδGOF variant (P850Sfs*36/WT from 

113, aged 27). An immunofluorescence analysis of thymic tissue sections from the patient with 

AR RelB deficiency showed a small dysplastic organ with a disorganized cortico-medullary 

architecture, atrophic medulla area and undetectable AIRE expression (Fig. 7B). In addition, 

keratin 10 (K10) positive post-AIRE mTECs and Hassall’s corpuscles were not detected in the 

patient’s tissues (Fig. 7B). An analysis of the thymus from the patient with the p52LOF/IκBδGOF 

variant revealed the presence of disorganized keratin 5 (K5)- and keratin 8 (K8)-positive thymic 

epithelium, and a lack of AIRE-expressing and K10+ post-AIRE cells relative to an aged-

matched control thymus (Fig. 7B). Overall, these findings suggest that inborn errors of the 

human alternative NF-κB pathway underlie the production of auto-Abs against type I IFN due 

to the impairment of AIRE expression in mTECs. 

 

Discussion 

We found that human inborn errors of the alternative NF-κB pathway (AR NIK, AR RelB, 

or AD p52LOF/IκBδGOF NF-κB2 disorders) define a new group of IEI underlying the 

development of auto-Abs neutralizing type I IFNs. The presence of these auto-Abs is 

remarkably consistent with the cellular phenotype found in the patients’ fibroblasts, 

culminating in defective p52/RelB activity, which may be secondary to the impaired processing 

of p100 to generate p52 (either through processing-resistance for p52LOF/IκBδGOF variants or 

an absence of NIK controlling this process), or to a quantitative or qualitative RelB deficiency 
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(either enhanced p100-IκBδ inhibitory capacity against RelB or a mutant RelB protein). In 

marked contrast, no anti-type I IFN neutralizing auto-Abs were found in patients heterozygous 

for p100-IκBδ LOF variants (p52LOF/IκBδLOF causing p100 and p52 haploinsufficiency, or 

p52GOF/IκBδLOF causing p52-GOF), or in patients with inborn errors of the canonical NF-κB 

pathway. This suggests that the correct processing of p100 is a key checkpoint for p52/RelB-

dependent activation of the alternative NF-κB pathway required to prevent the development of 

auto-Abs against type I IFNs.  

The alternative NF-κB pathway is essential for the control of AIRE expression in mouse 

mTECs 60,110,114,115. Indeed, Nik-, Ikka-, or Relb-deficient mice, and mice heterozygous for a 

p100 processing-resistant variant present an absence of thymic AIRE expression 60,110,114,115. 

Furthermore, deletion of the essential enhancer element (CNS1) containing two NF‐κB binding 

sites upstream from the Aire coding locus phenocopies Aire deficiency 116,117. In human 

thymuses, NFKB2 and RELB are selectively upregulated in mature AIRE-expressing mTECs 

expressing 118,119. We detected no AIRE expression in human thymuses lacking RelB or 

heterozygous for a p52LOF/IκBδGOF variant. These data suggest that, similar to the mouse model, 

the alternative human NF-κB pathway is essential for AIRE expression in the thymus through 

its role in ensuring correct p52/RelB activation. The remarkable association between the 

presence of auto-Abs against type I IFNs in patients with human inborn errors of NIK, RelB, 

and NF-κB2 and impaired p52/RelB activity suggests that intact p52/RelB activation is 

essential to prevent the breakdown of thymic central tolerance toward type I IFNs in humans. 

An absence of AIRE expression has also been reported in patients with germline (AR AIRE or 

RAG1/2 44–46) or somatic (mTEC neoplasia 120) conditions and auto-Abs against type I IFNs, 

further suggesting that AIRE-dependent thymic central tolerance prevents the development of 

these auto-Abs 48–50. Finally, as RANK-RANKL and CD40-CD40L have been shown to control 

AIRE expression in mice, evaluating the roles of these receptor-ligand crosstalk in mTEC 
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development and AIRE expression via the alternative NF-κB pathway in humans, is therefore, 

warranted. 

It is surprising that AIRE deficiency in patients with inborn errors of the alternative NF-κB 

pathway led to a breakdown of central tolerance almost exclusively restricted to the 13 IFN-α 

subtypes and IFN-ω. This situation contrasts with the immunological and clinical 

manifestations of APS-1 patients, which only partially overlap those of patients with inborn 

errors of the NF-κB pathway, in whom adrenal insufficiency and hypoparathyroidism, two of 

the main endocrine features reported in APS-1 patients, or the associated auto-Abs targeting 

TSA, were not reported 49,50,106. Ectodermal dysplasia, reported in patients with p52LOF/IκBδGOF 

variants or AR IKK-α deficiency, also seems to differ to some extent from that in APS-1 

patients, with little or no enamel dysplasia, but a higher frequency of alopecia, nail dysplasia, 

and hypotrichosis 77,121. These clinical and immunological differences may be explained by 

residual AIRE expression or function in a lineage-specific mTEC population. The clinical 

manifestations in patients with p52LOF/IκBδGOF variants also differ from those in patients with 

the other two forms of AD inborn errors of NF-κB2, probably due to the higher levels of IκBδ 

activity of the mutant. They define a unique syndrome including neutralizing auto-Abs against 

type I IFNs, central pituitary deficiency, and mild ectodermal dysplasia, expanding the 

previously proposed DAVID syndrome (“immunodeficiency with hypogammaglobulinemia, 

plus central pituitary deficiency”) as “deficit of anterior pituitary, auto-Abs against type I IFNs, 

viral susceptibility, immunodeficiency, and ectodermal dysplasia” 79.  

Our findings confirm the detrimental consequences of the presence of neutralizing auto-

Abs against type I IFNs for viral susceptibility 6,7,37,53. Despite their high risk of developing life-

threatening COVID-19 pneumonia, unvaccinated patients with inborn errors of the alternative 

NF-κB pathway displayed a high but incomplete penetrance of hypoxemic COVID-19 

pneumonia (6/9, 67%), as reported in patients with APS-1 or SLE (21 of 33, 64%, and 4 of 7, 
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57% respectively) 24,48–50,53. Additional protective or risk factors may be required to influence 

the clinical outcome of COVID-19 in these patients. Thus, it may not be a fortuitous 

coincidence that the two patients who developed mild SARS-CoV-2 infection despite the 

presence of neutralizing auto-Abs were young (seven years old, with auto-Abs neutralizing 

IFN-a and IFN-ω at 10 ng/mL), or had auto-Abs neutralizing only low concentrations of a 

single type I IFN (only IFN-ω at 100 pg/mL), two factors associated with a lower risk of 

developing severe COVID-19 6,8. Auto-Abs against type I IFNs seem to results in viral 

susceptibility extending beyond COVID-19, with a higher risk of developing severe herpesvirus 

diseases, such as chickenpox, early-onset shingles, and non-mucosal HSV-1 infection, as 

observed in patients with APS-1 or SLE 24,57. Consistently, p52LOF/IκBδGOF patients had a 

higher risk of severe forms of varicella and recurrent shingles. Furthermore, consistent with the 

presence of neutralizing auto-Abs against type I IFNs in almost 5% of individuals with critical 

influenza pneumonia studied 38, we found that 15% of the patients with p52LOF/IκBδGOF variants 

developed severe influenza pneumonia, mostly at a young age, suggesting that auto-Abs against 

type I IFNs may also underlie severe forms of influenza pneumonia in children and probably 

also in APS-1 patients.  

Our findings also suggest that a reinforcement of prophylactic or therapeutic interventions 

can improve the clinical outcome of viral diseases in patients with auto-Abs against type I IFNs. 

Thus, favorable outcomes of SARS-CoV2 infection were observed in all patients with 

p52LOF/IκBδGOF variants with pre-existing auto-Abs against type I IFNs managed by 

vaccination, together with prophylactic or therapeutic neutralizing anti-SARS-CoV-2 

monoclonal antibodies, IVIg supplementation, and/or recombinant IFN-β, as reported in 

patients with inborn errors of type I IFN immunity 122. Yellow fever and other live-attenuated 

viral vaccines should be avoided 37,123. Importantly, as these auto-Abs are probably caused by 

a thymic stromal defect, patients with inborn errors of the NF-κB pathway who undergo HSCT 
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may remain at high risk of severe viral disease due to the persistence of defective NF-κB 

signaling in their mutated host thymic epithelial cells. Collectively, these results suggest that 

the human alternative NF-κB pathway controls AIRE expression in mTECs and that human 

inborn errors of this pathway thereby underlie the development of neutralizing auto-Abs against 

type I IFNs and the resulting predisposition to viral infection. They also confirm that at least 

some individuals develop auto-Abs against type I IFNs because of an underlying IEI. The 

occurrence of critical COVID-19 in these patients is, therefore, due to an autoimmune 

phenocopy of IEI of type I IFN immunity. This finding suggests that other genetic etiologies 

remain to be discovered in the 0.3 to 2% of individuals under 65 years of age who carry such 

auto-Abs. The observation that genetic etiologies of AIRE in cis or in trans that disrupt central 

T-cell tolerance underlie these auto-Abs suggests that as yet undiscovered genetic etiologies 

may also affect this process. The genetic study of patients with auto-Abs against type I IFNs 

may reveal new molecular components in this or other processes. What triggers the rise in auto-

Ab levels against type I IFNs after the age of 65 years is another related question potentially 

related to thymic involution.  
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Materials and methods 

 

Subjects and samples 

We enrolled 65 patients with rare variants of NFKB2 though an international collaborative study. 

All the enrolled subjects provided written informed consent and were collected through 

protocols conforming to local ethics requirements. Ethics approval was obtained from the 

Comitato Etico Provinciale (NP 4000 – Studio CORONAlab). Clinical and immunological data 

were collected with a standardized questionnaire, together with at least one plasma sample. The 

plasma samples from the patient P1 were obtained through the NCT03394053, NCT03610802 

protocols.  

 

Outcome measures and definitions 

The severity of COVID-19 was defined according to the NIH Ordinal Scale, as previously 

reported 7,124. The NIH scale is an eight-point ordinal scale ranging from ambulatory (1 = no 

limitations of activities, 2 = limitation in activity), to hospitalized (3 = not requiring 

supplemental oxygen), moderate (4 = not requiring supplemental oxygen but requiring ongoing 

medical care (related to Covid-19 or to other medical conditions), severe (5 = requiring any 

supplemental oxygen) or critical (6 = requiring noninvasive ventilation or use of high-flow 

oxygen devices; 7 = receiving invasive mechanical ventilation or extracorporeal membrane 

oxygenation (ECMO); and 8 = death). 

 

Detection of anti-cytokine autoantibodies 

Gyros 

Cytokines, recombinant human (rh)IFN-α2 (Milteny Biotec, ref. number 130-108-984) or 

rhIFN-ω (Merck, ref. number SRP3061) were first biotinylated with EZ-Link Sulfo-NHS-LC-
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Biotin (Thermo Fisher Scientific, cat. number A39257), according to the manufacturer’s 

instructions, with a biotin-to-protein molar ratio of 1:12. The detection reagent contained a 

secondary antibody (Alexa Fluor 647 goat anti-human IgG (Thermo Fisher Scientific, ref. 

number A21445) diluted in Rexip F (Gyros Protein Technologies, ref. number P0004825; 1/500 

dilution of the 2 mg/mL stock to yield a final concentration of 4 µg/mL). PBS-T 0.01% buffer 

and Gyros Wash buffer (Gyros Protein Technologies, ref. number P0020087) were prepared 

according to the manufacturer’s instructions. Plasma or serum samples were then diluted 1/100 

in PBS-T 0.01% and tested with Bioaffy 1000 CD (Gyros Protein Technologies, ref. number 

P0004253), and Gyrolab X-Pand (Gyros Protein Technologies, ref. number P0020520). 

Cleaning cycles were performed in 20% ethanol.  

 

Plasmids and mutagenesis 

The NFKB2/p100, RELB and MAP3K14 plasmids were obtained from Origen with a C-

terminal DDK tag. The κB reporter construct (κB-luc), pGL4.32[luc2P/NF-κB-RE/Hygro] and 

pRL-SV40 vectors were obtained from Li et al. 103. Site-directed mutagenesis was performed 

as previously described 103.  

 

Cell culture and transfection 

HEK293T cells (American Type Culture Collection) were maintained in DMEM (Gibco) 

supplemented with 10% FBS (Gibco). Transient transfection was performed with X-

tremeGENE™ 9 DNA Transfection Reagent (Merck), in accordance with the manufacturer’s 

instructions. 

 

Functional evaluation of NFKB2 variants 

Luciferase reporter assays 
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The luciferase reporter assay was performed as previously described 103. WT HEK293T cells 

were transfected with a reporter plasmid (96-well plate), the pRL-SV40 vector (10 ng/well), 

WT MAP3K15, WT RELB, and a WT or mutant p100 in the presence of X-tremeGENE™ 9 

DNA Transfection Reagent (Merck). After incubation for 24 to 48 h, cells were harvested, and 

luciferase activity was measured with the Dual-Glo Luciferase Assay System (Promega). We 

considered a deleterious variant to be LOF if its luciferase activity was equivalent to that of the 

EV, hypomorphic if this activity was more than half that of the WT allele and gain-of-function 

(GOF) if this activity was less than half that of the WT. 

 

Western blot 

Whole-cell lysates from HEK293T, MDDC, T-cell blasts, primary or SV-40-transformed 

fibroblasts were prepared in RIPA buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1% Nonidet 

P40, 0.5% sodium deoxycholate, and 0.1% SDS) supplemented with Complete Protease 

Inhibitor Cocktail (Roche). Proteins were separated by electrophoresis in 10% PROTEAN TGX 

Precast Protein Gels (Bio-Rad), and transferred onto Immobilon-P polyvinylidene fluoride 

membrane (Millipore). All blots were incubated overnight with primary antibodies and 

developed with the Pierce ECL Western Blotting Substrate (Thermo Fisher Scientific). The 

antibodies used in this study included antibodies against p100/p52 (4882; Cell Signaling 

Technology), p105/p50 (N terminus; 3035; Cell Signaling Technology), p65 (sc-372; Santa 

Cruz Biotechnology), RelB (sc-48366; Santa Cruz Biotechnology), c-Rel (sc-6955; Santa Cruz 

Biotechnology), and the following secondary antibodies: Amersham ECL mouse IgG, HRP-

linked whole antibody (from sheep; NA931; GE Healthcare Life Sciences) and Amersham ECL 

rabbit IgG, HRP-linked whole antibody (from donkey; NA934; GE Healthcare Life Sciences).  

 

Confocal microscopy 
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HeLa cells were plated on chambered coverslips (#80826, iBidi) and were left 

untransfected or were transiently transfected with the a plasmid encoding p100, RelB and/or 

NIK and/or an empty pCMV6 vector for 48 hours. Primary or SV-40 fibroblasts were plated 

on chamber coverslips and left stimulated or not with Lt 100 ng/mL for 48 hours. The cells 

were fixed in 4% formaldehyde in phosphate-buffered saline (PBS), pH 7.4. Cells were 

incubated overnight at 4°C with anti-p100/p52 (4882; Cell Signaling Technology), or RelB (sc-

48366; Santa Cruz Biotechnology) primary antibodies. The cells were washed three times with 

PBS 1X and stained by incubation with secondary antibodies for 1 h at room temperature (goat 

anti-mouse IgG Alexa Fluor 488 (#A-11029); goat anti-rabbit IgG Alexa Fluor 633 (#A-11037)) 

and before mounting in Prolong-gold and visualization by confocal microscopy (×63 or x40 oil 

immersion lens).  

 

Functional evaluation of anti-cytokine autoantibodies 

Luciferase reporter assays 

The blocking activity of anti-IFN-α2 and anti-IFN-ω auto-Abs was determined with a reporter 

luciferase assay. Briefly, HEK293T cells were transfected with a plasmid containing the firefly 

luciferase gene under the control of the human ISRE promoter in the pGL4.45 backbone, and a 

plasmid constitutively expressing Renilla luciferase for normalization (pRL-SV40). Cells were 

transfected in the presence of the X-tremeGene 9 transfection reagent (Sigma Aldrich, ref. 

number 6365779001) for 24 hours. Cells in Dulbecco’s modified Eagle medium (DMEM, 

Thermo Fisher Scientific) supplemented with 2% fetal calf serum (FCS) and 10% healthy 

control or patient serum/plasma were either left unstimulated or were stimulated with IFN-α2 

(Milteny Biotec, ref. number 130-108-984) or IFN-ω (Merck, ref. number SRP3061) at 10 

ng/mL or 100 pg/mL, or with IFN-b (Miltenyi Biotech, ref. number: 130-107-888) at 10 ng/mL, 

or 1 ng/mL, or with one of the 13 IFN-a subtypes for 16 hours at 37°C. Each sample was tested 
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once for each cytokine and dose. Finally, cells were lysed for 20 minutes at room temperature 

and luciferase levels were measured with the Dual-Luciferase® Reporter 1000 assay system 

(Promega, ref. number E1980), according to the manufacturer’s protocol. Luminescence 

intensity was measured with a VICTOR X Multilabel Plate Reader (PerkinElmer Life Sciences, 

USA). Firefly luciferase activity values were normalized against Renilla luciferase activity 

values. These values were then normalized against the plasma used in non-stimulated condition. 

Samples were considered to be neutralizing if the indication of the luciferase activity, 

normalized the non-stimulated constitution, was below 5. 

 

Protein microarray 

Protein microarrays (HuProt™ from CDI laboratories) were incubated in 5 ml blocking 

buffer, consisting of phosphate-buffered saline (PBS) supplemented with 2% bovine serum 

albumin and 0.05 % Tween 20, for 90 min. The arrays were then incubated overnight in 5 mL 

of blocking buffer per array with serum from a blood donor or patient diluted 1:2000. Each 

array was then washed five times, for five minutes each, with 5 mL PBST (PBS + 0.05 % 

Tween 20). Alexa Fluor 647 goat anti-human IgG (Thermo Fisher Scientific Cat# A-21445, 

RRID:AB_2535862) and Dylight® 550 goat anti-GST (Columbia Biosciences Corporation 

Cat# D9-1310) were diluted in blocking buffer (1:2000 and 1:10 000 respectively) and each 

array was incubated in 5 mL of the resulting mixture for 90 minutes. Five washes were then 

conducted as previously described. Incubations and washes were performed on an orbital 

shaker, with aluminum foil to block out the light during the steps following the addition of 

fluorescent antibodies. Finally, each array was immersed in deionized water three times and 

centrifuged for approximately 30 seconds for drying. The arrays were scanned later the same 

day with an Innoscan 1100AL Fluorescence scanner (Innopsys) operating Mapix software and 

the resulting images were analyzed with Jan18-22_Huprot_v4.0_Gal and either GenePix Pro 
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5.1.0.19 or GenePix Pro 7. Data were normalized to compensate for signal intensity variation 

between experiments. Data from additional healthy controls from separate protein array 

experiments were included as described below.Signal intensities were extracted from the 

scanned image with GenePix Pro 5.1.0.19 or GenePix Pro 7, with subtraction of the local 

background: 

𝑆𝑖𝑔𝑛𝑎𝑙!"#$%&' = 

median(𝑆𝑝𝑜𝑡	𝑃𝑖𝑥𝑒𝑙	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦()*) − (𝐵𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑	𝑃𝑖𝑥𝑒𝑙	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦()*) 

 

Each protein was printed as duplicate spots. The resulting signal for one sample is defined as: 

𝑆𝑖𝑔𝑛𝑎𝑙+,-./% = max B𝑆𝑖𝑔𝑛𝑎𝑙!"#$%&'	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	1𝑆𝑖𝑔𝑛𝑎𝑙!"#$%&'	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	2
 

We checked for spurious results, by screening duplicates for large differences: 

 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒	!"#$%&' = 

max

⎩
⎨

⎧
𝑆𝑖𝑔𝑛𝑎𝑙+,-./%	1	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	1 −	𝑆𝑖𝑔𝑛𝑎𝑙+,-./%	1	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	2
𝑆𝑖𝑔𝑛𝑎𝑙+,-./%	2	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	1 −	𝑆𝑖𝑔𝑛𝑎𝑙+,-./%	2	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	2

…
𝑆𝑖𝑔𝑛𝑎𝑙+,-./%	'	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	1 −	𝑆𝑖𝑔𝑛𝑎𝑙+,-./%	'	𝑑𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒	2

 

The mean signal intensity was calculated across case and control samples separately: 

𝜇+&3',/4,5%5 = L 𝑆𝑖𝑔𝑛𝑎𝑙+,-./%

'!"#$#

&61

𝑖𝑛	𝑐𝑎𝑠𝑒𝑠 

𝜇+&3',/4#'$"#/5 = L 𝑆𝑖𝑔𝑛𝑎𝑙+,-./%

'!%&'(%)#

&61

𝑖𝑛	𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑠 

The difference between cases and controls was estimated as follows: 

log2(Fold	change) = log2
𝜇+&3',/4,5%5
𝜇+&3',/4#'$"#/5

 

where 𝜇	is the mean signal. 
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Detection of auto-Abs against cytokines by multiplex beads-array 

The method for detection of human IgG in serum using magnetic beads have been previously 

described [doi: 10.1007/s10875-021-01151-y] with the few exceptions that are specified in the 

brief description that follows. AnteoTech Activation Kit for Multiplex Microspheres (Cat# A-

LMPAKMM-10) was applied in accordance with the protocol of the manufacturer, including 

the optional blocking, to couple Magnetic beads (MagPlex®, Luminex Corp.) to the following 

commercial proteins (using 1,5 * 10^6 beads and 3 micrograms of each respective protein – 

one micrograms less in the cases of DSG1 and OR4K13) : CYP21A2, ADH7, ALOX15, alpha 

2 macroglobulin like, CASK, Desmocolin 2, DPYSL5, Desmoglein-3, KLHL31, KLHL40, 

KLHL41, Laminin gamma 1, LRRC32, PADI3, PKP1, PNMA5, RARS2, SERPINB3, 

SERPINB4, SFN, TFAP2B, TGM1, TGM3, TMPRSS11D, TROVE2, UGP2, UNC45B, 

ZNF300, IFNA2, IFNA1, IFNA7, IFNA14, IFNB1, IFNE, IFNW1, IL23, Antithrombin III, 

Factor V, Protein S, SARS-CoV-2 Nucleocapsid, SARS-CoV-2 S protein spike, SARS-CoV-2 

S protein RBD, Desmoglein-1, IFNA5, IL1F6, Prothrombin, IL22, OR4K13, IFNA6, IL1RN, 

JUP, IL28a, IFNA10, IFNA8, SPCS2, IL28b, IFNA16, IFNG, ADH5, IL29, IFNA17, IFNK, 

anti-IgG, IL6, IFNA2, IFNL4, EBNA1, ADAMS13, IFNA21, IL17A, RBM38, CXCL4, 

IFNA4, IL17F, ATP4A, ISG15, IFNG, IFNW1, IL17F, IL22, ApoH GM-CSF, MUSK, TNF-

alpha, Protein C, IL12. Samples were diluted 1:25 in PBS prior to 1:10 dilution in Assay buffer 

(0,05 PBST, 3% BSA, 5% Milk). Stock of magnetic beads were sonicated for 1 minute before 

distribution and then mixed with storage buffer from the activation kit. Diluted samples were 

centrifuged 1 min at 3000 rpm, and 45 microliters of each was subsequently incubated 2 hours 

with 5 microliters from the stock bead solution on a shaker at 650 rpm protected from light at 

room temperature. Beads were then washed (3xPBS-T 0.05%) after a 2000 rpm pulse and 

resuspended in 50 microliters of 0.2% PFA per well followed by careful vortex. After 10 

minutes of incubation at room temperature and 2000 rpm pulse, beads were washed (3xPBS-T 
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0.05%) and incubated with secondary antibody (Invitrogen, H10104 lot#2384336) 30 minutes 

at room temperature. Finally, the above washing routine was repeated and beads were dispensed 

in PBS-T 0.05% before the analysis. 

 

Microbiological investigations 

The normalized viral load was determined for each sample, by determining the viral load for 1 

million cells in the nasopharyngeal swabs by RT-qPCR with the SARS-CoV-2 R-gene kit 

(bioMérieux, Marcy l’Etoile, France). Briefly, nucleic acids were extracted from 0.2 mL NPS 

with NUCLISENS easyMAG and amplification was performed with a Bio-rad CFX96 

instrument. Viral load was determined with four internally developed quantification standards 

(QS) targeting the SARS-CoV-2 N gene: QS1 to QS4, at 1x105, 1x104, 1x103, and 1x102 

copies/µL, respectively, of a SARS-CoV-2 DNA standard. These QS were controlled and 

quantified with a Nanodrop spectrophotometer (Thermo Fisher Scientific, MA, USA) and 

Applied Biosystems QuantStudio 3D Digital PCR.  In parallel, NPS were tested with the CELL 

Control R-GENE kit (amplification of the HPRT1 housekeeping gene, bioMérieux), which 

contains two quantification standards, QS1 and QS2, at 104 copies/µL (50,000 cells/PCR in our 

conditions) and 103 copies/µL (5,000 cells/PCR) of DNA standard, respectively, to normalize 

the viral load according to the amount of sample. Normalized viral load was calculated as [Log10 

cp/106 cells] . Potential co-infections were 

investigated with the BioFire Respiratory 2.1 plus Panel (RP2.1plus) detecting 23 respiratory 

pathogens, including SARS-CoV-2 (bioMérieux, Lyon, France). 

 

Blood and nasal IFN score by Nanostring 
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Total RNA from whole blood was extracted from blood in PAXgene tubes with the Maxwell16 

LEV simplyRNA Blood kit (Promega), according to the manufacturer’s instructions. Blood 

IFN score was determined with Nanostring technology, as previously described 125. For nasal 

IFN score, we tested 100 μL nasal pharyngeal swab samples with the IFN prototype as 

previously described 41. The first prototype of the IFN pouch encompasses four ISGs (IFNα-

inducible protein 27, IFI44L, IFN-induced protein with tetratricopeptide repeats 1, radical S-

adenosyl methionine domain containing 2) and three housekeeping genes (hypoxanthine 

phosphoribosyltransferase 1, peptidylprolyl isomerase B, and 2,4-dienoyl-CoA reductase 1) for 

signal normalization. In brief, the pouches were hydrated with the hydration solution supplied 

with the kit. The PAXgene blood or nasal pharyngeal swab samples were mixed with 800 μL 

of the sample buffer provided with the kit and injected directly into the pouch and run on 

FilmArray 2.0 and FilmArray Torch instruments (BioFire Diagnostics). Results were delivered 

within one hour. Using a research version of the instrument, real-time quantification cycle 

values and post-amplification melt peaks were determined for each assay. The normalized 

expression values for each assay were then calculated with the internal reference genes. The 

nasal pharyngeal ISG score was calculated by the same method as for PAXgene samples, as 

previously described (Pescarmona et al., 2019). 

 

Cytometry by Time of Flight 

Whole-blood mass cytometry was performed with two different panels. The panels used were 

custom-produced, and their contents are shown in Table SVI. Labeled cells were frozen at -

80°C after overnight dead-cell staining, and acquisition was performed on a Helios machine 

(Fluidigm). All the samples were processed within 48 hours of sampling. Data analysis was 

performed with OMIQ software. 
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Immunostaining of human thymic sections  

Tissue was fixed in 4% paraformaldehyde (Thermo Fisher Scientific), washed with PBS, and 

embedded in paraffin. Antigen retrieval was performed on rehydrated tissue, by boiling sections 

in Citra antigen retrieval solution (Biogenex). Sections were blocked by incubation for 30 min 

at room temperature in  CAS-Block (Thermo Fisher Scientific) plus 0.2% Triton X-100 (Sigma-

Aldrich), followed by incubation overnight at 4°C with primary antibodies. Sections were 

washed with PBS-Tween 0.1% and stained with a biotinylated secondary antibody for 1 h at 

room temperature for AIRE visualization. When necessary, secondary antibody staining was 

performed at room temperature for 1 h. Sections were washed with PBS-Tween 0.1% and 

mounted in ProLong Diamond Antifade mounting solution (Thermo Fisher Scientific). Images 

were acquired on an Apotome microscope (Zeiss). The antibodies used were KRT8-Alexa647, 

Rb (clone EP1628Y) – Abcam ab192468, 1:300; KRT5 Alexa488, Rb (clone EP1601Y) – 

Abcam ab193894, 1:300; AIRE, rat – eBioscience 14-9534-82, 1:50 and pan-ketatin, Rb – 

Abcam ab9377, 1 :200.  

 

RNA extraction and sequencing and analysis 

Total RNA was isolated from whole blood as previously described 125. RNA-sequencing was 

performed with Illumina Novaseq S2 instruments (2x100) and a read depth of 70 M. Single 

samples were sequenced across two lanes, and the resulting FASTQ files were merged by 

sample. All FASTQ files passed quality control and the sequences were aligned with the 

GRCh38 reference genome, with STAR (2.6.1d). BAM files were converted to a raw count 

expression matrix with featurecount. Raw count data were normalized with DEseq2. The 

ensemble IDs targeting multiple genes were collapsed (average), and a final data matrix gene 

was generated for single gene set enrichment analysis with the BloodGen3Module gene set 

[PMID: 34282143, 33624743]. Statistical analysis were conducted with a predefined gene set. 
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Specifically, we employed a fixed repertoire of 382 blood transcriptional modules that were 

thoroughly annotated and characterized functionally, as described in detail in recent 

publications [PMID: 34282143, 33624743]. Briefly, this repertoire of transcriptional modules 

(“BloodGen3") was identified based on co-expression, as measured in a collection of reference 

blood transcriptome datasets encompassing 16 pathological or physiological states and 985 

individual transcriptome profiles. Sets of co-expressed transcripts were derived from a large 

weighted coclustering network in which edges represented the number of times a pair of genes 

coclustered in the 16 reference datasets (with a weight of 1 to 16). We calculated an interferon 

module enrichment score for individual samples, by performing single-sample gene set 

enrichment analysis (ssGSEA) (GSVA package (60)), with the six interferon-response modules 

of the BloodGen3 module aggregate A28 as input.  The enrichment scores of individual samples 

were used for heatmap visualization.  

 

Thymus CT scan 

We performed a retrospective assessment of the thymus for those patients for whom a chest 

CT-scan was available. For patients with several scans, we selected the first scan or the scan on 

which the thymus was largest. Most of the patients' scans were performed without contrast 

injection, and the thymic margins were assessed by multiplanar reconstruction. The thymus was 

measured in three planes: thickness and width in the axial plane through the aortic arch, greatest 

height in a coronal or sagittal oblique plane. We established a control group matched for age 

(+/- one month) and sex. Three controls were selected per patient. The control group was 

randomly selected from scans performed at our center for polytrauma, excluding severe head 

trauma with coma or neurologic disorders and thoracic trauma (so as not to alter mediastinal 

anatomic reports). 

 
Statistical methods 
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Statistical analyses were performed with GraphPad Prism 9.3.1. Mann-Whitney was performed. 

In the relevant figures, n.s. indicates not significant, ***p < 0.001; **p < 0.01; and *p < 0.05. 
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Figure legends 

 

Fig 1. Pedigrees of the 65 patients with heterozygous NFKB2 variants. (A) Pedigrees of the 

patients carrying heterozygous rare variant of NFKB2. Generations are indicated by Roman 

numerals (I–II), and each symptomatic carrier included in the study, represented by a black 

symbol, is indicated as P followed by an Arabic numeral (P1–P65). The relatives with a grey 

symbol represent symptomatic carriers but without material available for this study. A vertical 

bar, within a white or a grey symbol, indicates an asymptomatic carrier included or not included 

(because of no available material), respectively in the study; an arrow indicates the index case; 

a black diagonal line indicates a deceased individual. “E?” indicates individuals of unknown 

genotype. (B) CADD-MAF (combined annotation dependent depletion-minor allele frequency) 

graph of the rare or private NFKB2 variants (n=26) from the 65 patients recruited. The red and 

white dots represent pLOF and missense heterozygous NFKB2 variants, respectively. The 

dashed line represents the mutation significance (MSC) cutoff threshold of 33 for NFKB2. (C) 

CoNeS score of the NFKB2 gene.  

 

Fig. 2. Functional testing of the NFKB2 alleles by overexpression and assessments of p52-

dependent transcriptional activity and NIK-dependent p100 processing. (A) Schematic 

diagram of the protein (p100) encoded by the NFKB2 gene with the previously reported variants 

(n=12) and variants included in this study (n=25). The p52 subunit spans amino acids 1~405. 

The C-terminal domain (CTD) spans amino acids 760-900. The RHD domain is shown in 

purple, the ARD in blue, the CTD, including the PID and the NRS in brown. The NFKB2 

variants that are LOF for the p52/p52 repression of κB transcriptional activity and located in 

the RHD domain (p52-LOF RHD) are shown in orange, the p52-GOF mutations in the ARD 

are shown in blue, and the p52-LOF mutants in the CTD (p52-LOF CTD) are shown in red. 
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Neutral NFKB2 variants are shown in black. The variants shown in bold correspond to those of 

patients recruited in this study. (B) Relative luciferase activity (RLA) of HEK293T cells 

transfected with a κB reporter luciferase construct (κB-luc), in the presence or absence of 

plasmids encoding NIK, RelB, and/or p100/NF-kB2 WT, testing the biochemical p100/NF-

kB2 biochemical mutants reported in the literature, normalized to the WT p100/NF-kB2. A 

deleterious mutant was considered p52-LOF if its luciferase activity was similar to that 

following cotransfection with the EV, RELB and NIK, and p52-GOF if this activity was less 

than half that following cotransfection with RELB, NIK and WT NFKB2 (C) RLA of HEK293T 

cells transfected with a κB-luc testing the NFKB2 variants from the patients included in this 

study and the other variants previously reported. A deleterious mutant was considered p52-LOF 

if its luciferase activity was similar to that following cotransfection with the EV, RELB and 

NIK, and p52-GOF if this activity was less than half that following cotransfection with RELB, 

NIK and WT NFKB2 (D) Western blot of HEK293T cells transfected for 48 h in the presence 

or absence of plasmids encoding NIK and WT or mutant p100/NF-kB2, showing 

phosphorylated Y866-p100 (P-p100) levels, and p100 and p52 detected with an N-terminal 

antibody directed against NF-κB2 (p52). All experiments were performed at least three times, 

independently. The luciferase assay data shown are the means of at least three independent 

experiments.  

 

Fig 3. The p52LOF/IκBδGOF mutants have enhanced p100-IκBδ activity when overexpressed 

or when expressed endogenously in heterozygous patients’ cells. (A) Relative luciferase 

activity (RLA), representing the p100/NF-kB2-dependent capacity to repress κB transcriptional 

activity for luciferase in the presence or absence of plasmids encoding NIK and increasing 

doses of a plasmid encoding the C-terminal part of p100/NF-κB2 (Cter, aa 405-900) from WT 

p100/NF-κB2 (CterWT), LOF-Cter (CterR611*), or GOF-Cter (CterR853* and CterS866N) mutants, 
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48 h after transfection. Results are expressed as a percentage of the κB-luc RLA after 

transfection with NIK alone (left panel); the kinetic effect of NIK transfection alone or together 

with a plasmid encoding the various Cter constructs, represented by κB-luc transcriptional 

repression, from 24 to 72 h after transfection, is shown on the right panel. (B) Kinetics of 

transfection with NIK alone or together with a plasmid encoding the dimer-deficient Y247A 

simple (p100Y247A) or double mutants (p100/Y247A/W270*, p100Y247A/R611*, p100Y247A/S866N, or 

p100Y247A/R853*), in terms of the capacity for κB transcriptional repression of luciferase activity 

from 24 to 72 h after transfection. Results are expressed as a percentage of the κB RLA after 

transfection with NIK alone. (C) Western blot of HEK293T cells cotransfected with a plasmid 

encoding NIK, together with various doses of a plasmid encoding the WT or the p52LOF/IκBδLOF 

W270* or the p52LOF/IκBδGOF R853* or S866N NFKB2 variants, together with a constant dose 

of an empty vector (left panel) or of WT-NFKB2 (right panel). (D) Subcellular localization of 

the WT or the K321Sfs, R611*, R853*, and S866N p100/NF-kB2 variants used for 

cotransfection with RelB, with or without NIK, as determined by confocal microscopy on HeLa 

cells. Nuclei were stained with DAPI; p100 and RelB were detected with antibodies recognizing 

their N-terminal domain. (E) Western blot of P-p100, NF-kB2 (p100/p52), NF-kB1 (p105/p50), 

RelB, and RelA in primary fibroblast from one healthy control, a patient with the 

p52LOF/IκBδGOF R853*/WT variant, a patient with the p52LOF/IκBδLOF K321Sfs/WT variant, a 

patient with AR complete (Q73Tfs*152/Q73Tfs*152) RelB or (P565R/P565R) NIK deficiency, 

with or without stimulation with LT-α1β2 (Lt) for 48 h, and a recapitulative graph depicting 

total p100/p52 intensity ratio is shown. The bars and error bars represent the mean of two 

different experiments and the standard deviation, respectively. (F) Confocal microscopy 

showing the subcellular distribution of RelB in primary fibroblasts from two healthy controls 

(HC1, HC2), patients with the a p52LOF/IκBδLOF K321Sfs/WT or a p52LOF/IκBδGOF R853*/WT 

NF-κB2/p100 variant, and patients with AR complete RelB (Q72Tfs*152/Q72Tfs*152) or NIK 
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(P565R/P565R) deficiency, with and without stimulation with 100 ng/mL of TWEAK for 48h. 

At least two independent experiments were performed. The luciferase assay data shown are the 

mean values from at least three independent experiments. 

 

Fig. 4. Distinctive immunological and clinical phenotype of patients with p52LOF/IκBδGOF 

variants. (A) tSNE analysis on concatenated whole-blood samples from 10 patients with 

p52LOF/IκBδGOF variants, or 10 age-matched healthy controls, by CyTOF. tSNE analysis from 

the patients with p52LOF/IκBδLOF are not represented as CyTOF was performed in only two 

patients. (B) Cell counts and proportions of total B and B-cell subsets determined by CyTOF 

in healthy controls, patients with a p52LOF/IκBδGOF variant and auto-Abs against type I IFNs 

(n=10, red dots), patients with p52LOF/IκBδLOF variants (n=2, K321Sfs/WT and c.104-

1G>C/WT, orange dots). (C) UMAP-based unsupervised clustering analysis on CD19+ B cells 

from a concatenated group of 10 patients with p52LOF/IκBδGOF variants and 31 age-matched 

controls, with a heatmap showing the mean levels of the surface markers included in the 

clustering defining 21 distinct metaclusters, the CD27 marker expression and the metacluster 

distribution in HC or in the patients with p52LOF/IκBδGOF variants (D-E) Contour plots and 

proportions of Tregs (D) and of Tfh cells (E) in patients with a p52LOF/IκBδGOF variant with 

(n=9, red circle) or without (n=1, red square) auto-Abs against type I IFN, relative to aged-

matched controls (n=27) and two patients with a p52LOF/IκBδLOF variant (K321Sfs/WT and 

c.104-1G>C/WT) without auto-Abs against type I IFNs (orange circle). (F) Proportion of 

patients with p52LOF/IκBδGOF (n=51), p52GOF/IκBδLOF (n=6) or p52LOF/IκBδLOF (n=5, with 2 

reported in this study and 3 previously reported in 85) NF-kB2 variants presenting clinical 

manifestations. (G) Proportion of patients with severe/recurrent or non-severe viral diseases 

among the 51 patients with p52LOF/IκBδGOF NF-kB2 variants. (H) COVID-19 severity scale for 

unvaccinated patients with a p52LOF/IκBδGOF (red), p52GOF/IκBδLOF (blue), or neutral NF-kB2 
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(gray circle) variant. (I) Age at the COVID-19 episode in unvaccinated patients with a 

p52LOF/IκBδGOF (red), p52GOF/IκBδLOF (blue), or neutral NF-kB2 (gray circle) variant, as a 

function of COVID-19 severity. 

 

Fig. 5. Neutralizing auto-Abs against type I IFNs detected in patients heterozygous for 

p52LOF/IκBδGOF variants and patients with inborn errors of RelB or NIK. (A) Detection of 

IgG auto-Abs against IFN-α2 by Gyros in patients with AD inborn errors of NF-κB2 with 

p52LOF/IκBδLOF (n=2), p52GOF/IκBδLOF (n=6) or p52LOF/IκBδGOF (n=50) variant and in six 

patients with idiopathic primary antibody deficiency (PAD) carrying a neutral NFKB2 variant 

and in patients with APS-1 (n=45). Positive controls (C+, n=10) correspond to individuals 

previously identified with IgG auto-Abs against IFN-α2, healthy controls (HC, n=66) 

correspond to individuals previously identified without IgG auto-Abs against IFN-α2. (B) 

Detection by protein microarray analysis of the 17 type I IFNs including the 13 IFN-α, IFN-β, 

IFN-e, IFN-κ, and IFN-ω in patients with p52LOF/IκBδGOF variants (n=13), p52LOF/IκBδLOF (n=1) 

or AR APS-1 (n=4) and auto-Abs against type I IFNs. Values are normalized against the mean 

fluorescence of plasma from controls (n=22). (C-E) Luciferase-based neutralization assay to 

detect auto-Abs neutralizing 100 pg/mL IFN-a2 (C), IFN-w (D), or 10 ng/mL IFN-b (E), in 

individuals previously identified with neutralizing  anti-IFN-I auto-Abs (C+, n=10), healthy 

controls (HC, n=66), patients with inborn errors of NF-κB2, including six patients with 

p52GOF/IκBδLOF variants, two patients with a p52LOF/IκBδLOF variant, 51 patient with a 

p52LOF/IκBδGOF variant, six patients with idiopathic PAD carrying a neutral variant of NFKB2, 

and 45 APS-1 patients. Plasma samples were diluted 1:10 in all tests. HEK293T cells were 

transfected with the dual luciferase system with IFN-sensitive response elements (ISRE) before 

treatment with type I IFNs with or without patient plasma, and relative luciferase activity (RLA) 

was calculated by normalizing firefly luciferase activity against Renilla luciferase activity, 
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before normalization against non-stimulated conditions. An induction factor of less than five 

related to non-stimulated condition was considered to correspond to neutralizing activity 

(dashed line). (F-H) Luciferase-based neutralization assay to detect auto-Abs neutralizing 100 

pg/mL IFN-a2 (F), IFN-ω (G) or 10 ng/mL IFN-β (H) in patients with inborn errors of BAFFR 

(n=1), XL-CD40L (n=3), AR NIK deficiency (n=2), AR RelB deficiency (n=8) and in healthy 

relatives heterozygous for a null or hypomorphic RELB allele (n=8). (I) Correlation between 

the p52 transcriptional activity assessed in the κB luciferase assay (y-axis) and the neutralizing 

status of auto-Abs against IFN-α2 at 100 pg/mL by the ISRE luciferase assay (x-axis) in patients 

with inborn errors of NF-κB2. (J) Protein microarray showing the distribution of auto-Ab 

reactivity against 20,000 human proteins in plasma samples from patients carrying a 

p52LOF/IκBδGOF variant (n=13, with detectable (n=8) or undetectable (n=5) auto-Abs against 

type I IFNs) and one patient with the p52LOF/IκBδLOF K321Sfs variant without auto-Abs against 

type I IFNs. Data are represented as the fold change relative to 22 plasma samples from healthy 

donors. Reds dots represent type I IFNs and yellow dots represent type III IFNs. Data for all 

Gyros, HuProt and neutralization assay experiments are presented as the mean for at least two 

technical replicates. 

 

Fig. 6. Susceptibility to COVID-19 and other severe viral diseases is strongly associated 

with the presence of neutralizing auto-Abs against type I IFNs. (A) Proportion of patients 

with a p52LOF/IκBδGOF variant and manifestations of viral diseases as a function of their anti-

type I IFN auto-Ab status. (B) Clinical and immunological manifestations in patients with a 

p52LOF/IκBδGOF variant, as a function of anti-type I IFN auto-Ab status. (C) Chord diagram plot 

of the main clinical and immunological manifestations of patients with inborn errors of NF-

κB2. (D) Anti-IFN-α2 IgG detection by Gyros in individuals previously identified with 

neutralizing anti-IFN-I auto-Abs (C+, n=10), healthy controls (HC, n=7), patients with a 
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p52LOF/IκBδGOF (n=9),  p52GOF/IκBδLOF (n=2) or neutral variant (n=2) and COVID-19, as a 

function of disease severity. (E) Heatmap showing the type I IFN neutralization profile of the 

nine patients with p52LOF/IκBδGOF variants and two with a p52GOF/IκBδLOF variant during 

COVID-19, according to disease severity and clinical presentation during infection. The red 

squares indicate a complete neutralization capacity of the plasma for ISRE induction in the 

luciferase reporter assay system (induction <5 relative to non-stimulated (NS) conditions), and 

the white squares indicate a total absence of neutralizing auto-Ab detection in the ISRE-

luciferase assay. (F) IFN score and viral load in nasal swabs during the course of COVID-19 in 

two patients with a p52LOF/IκBδGOF variant (P27 in blue and P28 in pink). (G) IFN score and 

viral load in whole blood (left panel) or nasal swabs (rights panels) during the course of 

COVID-19 in P27 and P28 (blue and pink dots, respectively), or n=36 individuals infected with 

SARS-CoV-2 and presenting only mild disease (gray dots). The vertical arrows indicate the 

times of recombinant IFN-β injection and the arrowheads indicate the infusion of monoclonal 

antibody against SARS-CoV-2 spike. (H) ISG score induction by IFN module analysis during 

the course of COVID-19 in P27 and P28 before and after recombinant FN-β treatment and two 

age-matched controls (HC1 and HC2) infected with SARS-CoV-2, regarding the presence or 

not of auto-Abs against type I IFNs and their nasal SARS-CoV-2 viral load.  

 

Fig. 7. Impaired mTEC development and AIRE thymic expression in a patient with a 

p52LOF/IκBδGOF variant and a patient with AR RelB deficiency. (A) Estimation of thymus 

volume in patients with a p52LOF/IκBδGOF variant without (red squares) or with (red circles) 

auto-Abs against type I IFNs, across ages, relative to aged-matched controls aged from 3 to 16 

years. (B) Immunofluorescence staining of thymic tissue from age-matched controls and 

patients with a p52LOF/IκBδGOF variant or AR complete RelB deficiency. The thymic epithelium 

is stained with K5 (green) or K8 (red). Hassall’s corpuscles in control tissue are marked “HC”. 
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The scale bars correspond to 100 μm or 50 μm, as indicated. AIRE-expressing cells (green) and 

Hassall’s corpuscles were found in the controls but not in patient tissues, as shown at higher 

magnification in the inset.  
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Supplementary Materials 

 

Supplementary Fig. 1. Population genetics and constraint metrics of the NFKB2 gene. (A) 

Representation of the alternative NF-κB pathway and the patients included. (B) Genomic 

constrained coding regions across NFKB2 as estimated by the missense tolerance ratio (MTR) 

score evaluating region-specific intolerance to missense variants. A score < 1.0 indicates a 

lower-than-expected ratio of missense to synonymous variants in the gnomAD v2.0 dataset for 

the 21-bp window surrounding an amino-acid residue. The horizontal dashed lines represent 

the 5th (red), 25th (orange), 50th (black) percentile most missense-depleted regions for NFKB2. 

The NIK-responsive sequence (NRS, amino acid 861-871, gray area), which includes all the 

deleterious NFKB2 missense variants in the CTD and the two critical phosphorylation sites at 

S866 and S870, is within the 5th percentile for the most missense-depleted regions for NFKB2. 

The lower graph shows the distribution of the heterozygous NFKB2 variants reported in 

gnomAD 2.1.1 and from the patients reported in this study, by location within the protein and 

CADD score. (C) CADD-MAF graph of the NFKB2 variants reported in the public databases 

gnomAD v2.2.1 and BRAVO/TOPMed. The red and gray dots represent heterozygous pLOF 

and heterozygous in-frame (missense and indel) variants, respectively. The green dots represent 

homozygous missense variants. The horizontal dashed line represents the mutation significance 

(MSC) cutoff threshold of 33 for NFKB2. The vertical dashed line represents the MAF 10-4. (D) 

Electropherograms showing the c.104-1G>C/WT essential splice-site mutation of P62 and a 

healthy control (left) and the proportion of transcripts identified by sequencing 100 colonies 

from TOPO cloning with cDNA from PCR products amplifying a region from exon 2 to 7 in 

P62 or a healthy control. (E) Pedigrees and mutations of patients with inborn errors of RelB, 

NIK, BAFFR and CD40L. The relatives with a grey symbol represent symptomatic carriers but 

without material available for this study. A dot within a white symbol indicates an 
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asymptomatic carrier; an arrow indicates the index case; a black diagonal line indicates a 

deceased individual. “E?” indicates individuals of unknown genotype. 

 

Supplementary Fig. 2. Functional testing of NFKB2 variants. (A) Schematic representation 

of the alternative NF-κB pathway and the function of the p52/RelB and p52/p52 heterodimers 

(left panel); a graphical overview of the luciferase assay to test the p52 function of the NFKB2 

variants (middle panel); and a schematic representation of the functional consequence of the 

WT, p52GOF or p52LOF variants by the luciferase assay. (B) Relative luciferase activity (RLA) 

of WT or RelA-deficient HEK293T cells transfected with a κB reporter construct (κB-luc) in 

the presence or absence of plasmids encoding NIK with or without RelB for 24, 48 or 72 h. 

Results represent RLA normalized according to the value for EV conditions. (C) Western blot 

of HEK293T cells transfected for 24 h (left panel) or 48 h (right panel) in the presence or 

absence of plasmids encoding NIK and WT or the previously reported biochemical p100 

mutant. (D) Luciferase assay testing the NF-kB2/p100 biochemical mutants (left) or deleterious 

variants from patients (right), 24 h after transfection. (E-F) RLA of HEK293T cells transfected 

with a κB reporter construct (κB-luc) in the presence or absence of plasmids encoding NIK, 

RelB and WT NF-kB2/p100 or seven NF-kB2/p100 missense variants of patients included in 

this study (n=5 variants) or previously reported (n=2), or the 14 missense variants reported in 

the public databases at a MAF >10-4, after 24 h (E) or 48 h (F) of transfection. (G) Western 

blot of HEK293T cells transfected in the presence or absence of plasmids encoding NIK and 

NF-kB2/p100 WT or containing the missense variants reported in the public databases at a 

MAF >10-4. (H) Graphical illustration of allele testing in the NIK-RELB-NF-kB2 triple 

cotransfection assay.  

Supplementary Fig. 3. The processing-resistant NFKB2 mutants have enhanced p100-

IκBδ activity when overexpressed and in heterozygous patients’ cells. (A) Functional 
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testing of the capacity of the NF-kB2/p100 WT, W270*, R611*, or R853* or A867V mutants 

for κB transcriptional repression of luciferase activity in the presence or absence of plasmids 

encoding NIK, and increasing doses of WT or mutant NF-kB2/p100, 48 h after transfection. 

Results are expressed as a percentage of the κB RLA after transfection with NIK alone. (B) 

Kinetic effect of the transfection of NIK alone or together with a plasmid encoding WT or 

mutant NF-kB2/p100 for κB transcriptional repression of luciferase from 24 to 72 h after 

transfection. Results are expressed as percentage of the κB RLU after transfection with NIK 

alone. (C) Subcellular localization of NF-κB2 in HeLa cells transfected with NF-kB2/p100 WT 

or the variants. (D) Subcellular localization of RelB after cotransfection with plasmids encoding 

the  C-terminal part (Cter, aa 405-900) from WT (CterWT), LOF-Cter (CterR611*), or GOF-Cter 

(CterR853* and CterS866N) p100/NF-κB2 mutants, with or without NIK, 24 h after the transfection 

of HeLa cells. (E) Western blot of  MDDC total cell extracts from controls (HC1, HC2, HC3, 

HC11) or two patients carrying p52LOF/IκBδGOF (R848Efs*38/WT and R853*) variants, a 

patient with p52LOF/IκBδLOF carrying the K321Sfs/WT variant, and a patient with XL-CD40 

deficiency (c.409+2T>C/ c.409+2T>C), with and without stimulation with CD40L for 48 h, and 

a recapitulative graph depicting total p100/p52 intensity ratio is shown. The bars and error bars 

represent the mean of two different experiments and the standard deviation, respectively. (F) 

Western blot of T-cell blast total cell extracts from two healthy controls (HC1, HC2), or two 

patients with the K321Sfs p52LOF/IκBδLOF or c.104-1G>C/WT variants. (G) Western blot of P-

p100, p100, p52, RelB and NIK expression in total cells extracts of SV-40-transformed 

fibroblasts from two healthy controls, patients with the p52LOF/IκBδGOF R853*/WT variant, 

complete NEMO deficiency (NEMO-/Y) or AR complete NIK deficiency (NIK-/-), with or 

without stimulation with Lt, or TNF for 48 h, and a recapitulative graph depicting total 

p100/p52 intensity ratio is shown. The bars and error bars represent the mean of 2 different 

experiments and the standard deviation, respectively. (H) Western blot showing p100 
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processing into p52 and RelB induction in total cell extracts of SV-40-transformed fibroblasts 

from a healthy control or a patient with AR complete NIK deficiency (NIK-/-). (I) Confocal 

microscopy showing the subcellular distribution of p52 in primary fibroblasts from two healthy 

controls (HC), patients with the p52LOF/IκBδLOF K321Sfs*/WT or the p52LOF/IκBδGOF 

R853*/WT NF-kB2/p100 variants, AR complete RelB deficiency (RelB-/-, 

Q73Tfs*152/Q73Tfs*152), or AR complete NIK deficiency (NIK-/-, P565R/P565R) with and 

without stimulation with 100 ng/mL TWEAK for 48 h, using an antibody recognizing the N-

terminal of p100. (J) Confocal microscopy showing the subcellular distribution of RelB in SV-

40-transformed fibroblasts from two healthy controls (HC), patients with the p52LOF/IκBδLOF 

K321Sfs*/WT or the p52LOF/IκBδGOF R853*/WT NF-kB2/p100 variants, AR complete RelB 

deficiency (RelB-/-, Q73Tfs*152/Q73Tfs*152), AR complete NIK deficiency (NIK-/-, 

P565R/P565R), complete NEMO deficiency (NEMO-/Y), with and without stimulation with 100 

ng/mL TWEAK for 48 h. (K) Confocal microscopy showing the subcellular distributions of 

p100/p52 (left panel), and RelB (right panel) in MDDCs from two healthy controls, two patients 

with p52LOF/IκBδLOF (K321Sfs*/WT and c.104-1G>C/WT), and a patient with p52LOF/IκBδGOF 

R853*/WT NF-kB2/p100 variants, stimulated with CD40L for 48 h.  

 

Supplementary Fig. 4. Immunological investigation of patients with inborn errors of NF-

κB2. (A) Immunoglobulin IgG, IgM, and IgA levels (g/L) in patients with inborn errors of NF-

κB2. (B) B-cell count across ages in patients with p52LOF/IκBδGOF variants with (n=35, red 

dots) or without (n=8, red square) auto-Abs against type I IFNs, patients with p52GOF/IκBδLOF  

(n=3 blue dots) or neutral (PAD, gray dots) NF-kB2 variants. Normal B-cell count for age 

corresponds to the gray area. (C) Proportion of B cells in healthy controls (n=15), patients with 

a p52LOF/IκBδGOF variant (n=10, red dots), patients with p52LOF/IκBδLOF variants (n=2, 

K321Sfs/WT and c.104-1G>C/WT, orange dots). (D) Proportions and absolute values of B-cell 
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subsets identified in the 21 metaclusters, and representation of the CD27, CD21, CD38 and 

CD24 markers on UMAP in healthy controls (n=22), patients with a p52LOF/IκBδGOF variant 

(n=10, red dots), patients with p52LOF/IκBδLOF variants (n=1, K321Sfs/WT, orange dots). (E-

J) Counts of lymphocytes and T-cell subsets (E); proportions and counts of CD8 and CD4 T-

cell subsets (F); counts of Tregs (G), counts of memory CD4+ T cells, counts and proportions 

of cTFh and cTFh subsets (H);  counts and proportions of NK cells and NK cell subsets, counts 

of MAIT and iNKT cells(I); proportions and counts of monocytes and dendritic cells in patients 

with inborn errors of NF-κB2 and age-matched controls (J). (K) Gating strategy for CyTOF 

immunophenotyping. CD4+ RTE, Treg and Tfh phenotyping in the 4 patients with the 

E418*/WT (n=1) or R635*/WT (n=3) p52GOF/IκBδLOF variant (blue dots, from 85) and their 

age-matched controls (black dots from the same panel) were performed by FACS.  

 

Supplementary Fig. 5. Neutralizing auto-Abs against type I IFNs in patients with inborn 

errors of the alternative NF-κB pathway (A) Detection of auto-Abs against type I IFNs by 

multiplex bead array in patients with p52LOF/IκBδGOF variants (n=51 patients), p52LOF/IκBδLOF 

variant (n=1 patient), AR RelB (n=8 patients) or AR NIK (n=2 patient) deficiency, idiopathic 

PAD (n=5 patient), or APS-1 (n=1 patients), and healthy controls (HC, n=106). (B-C) 

Luciferase-based neutralization assay for detecting auto-Abs neutralizing 10 ng/mL IFN-a2 (B) 

or IFN-w (C) in patients with inborn errors of NF-κB2 and APS-1 patients. Positive controls 

(C+, n=10) correspond to individuals previously identified with IgG auto-Abs against IFN-α2, 

healthy controls (HC, n=66) correspond to individuals previously identified without IgG auto-

Abs against IFN-α2. (D) Correlation between the detection of auto-Abs against IFN-α2 by 

Gyros (x-axis) and results for the ISRE luciferase-based neutralization assay (y-axis) after 

stimulation with 100 pg/mL IFN-α2. The dotted line represents the cutoffs for detection 

(value >50) or neutralization (induction <5). (E-F) Proportion of patients with neutralizing 
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auto-Abs against type I IFNs at 10 ng/mL and 100 pg/mL for patients with a p52LOF/IκBδGOF 

variant (E), and APS-1 patients (F). (G) Proportion of patients with neutralizing auto-Abs 

against IFN-α and/or IFN-ω among patients carrying a missense or pLOF p52LOF/IκBδGOF 

variant. (H) Age distribution of patients with a p52LOF/IκBδGOF variant, AR RelB or NIK 

deficiency, or APS-1 according to the presence or absence of neutralizing auto-Abs against type 

I IFNs in their plasma. (I) Correlation between p52 transcriptional activity assessed in luciferase 

assays and auto-Abs neutralizing 100 pg/mL IFN-ω status in patients with inborn errors of the 

NF-κB pathway. (J) Detection of IgG auto-Abs against IFN-α2 by Gyros in patients with inborn 

errors of the alternative NF-κB signaling. (K) Luciferase-based neutralization assay for 

detecting auto-Abs neutralizing 10 ng/mL IFN-a2 or IFN-w in patients with inborn errors of 

the alternative NF-κB signaling pathway. (L) Proportion of patients with auto-Abs neutralizing 

type I IFNs at 10 ng/mL and 100 pg/mL in patients with AR RelB deficiency. (M-N) 

Luciferase-based neutralization assay for detecting auto-Abs neutralizing 100 pg/mL IFN-a2 

(M) or IFN-w (N) in patients with inborn errors of the canonical NF-κB pathway. DN means 

dominant-negative RelA deficiency (unpublished) (O) Heat map of the autoantigens with the 

highest levels of enrichment in patients with a p52LOF/IκBδGOF variant (n=13, including 8 with 

and 5 without neutralizing auto-Abs against type I IFNs), AR RelB (n=8), AR NIK (n=2) 

deficiency, or with APS-1 (n=4) relative to 22 healthy controls (HC) by Protein microarray. 

Results are shown as the mean fluorescence of two replicates with a log2 fold-change >1.8 in 

patients with the 14 patients with inborn errors of NF-κB2 tested as compared to HC. (P) 

Detection of auto-Abs against ATP4A, RBM38, TROVE2 or KLHL31 by multiplex beads 

array. (Q) Heat map representing the autoantigens classically detected in APS-1 patients, as 

detected with the Protein microarray on plasma samples from patients with inborn errors of the 

alternative NF-κB pathway and 22 healthy controls. Results are shown as a log2 fold-change in 

luminescence in patients with inborn errors of NF-κB2 relative to healthy controls (R) Protein 
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microarray auto-Ab distribution in patients with a p52LOF/IκBδGOF variant relative to healthy 

controls. Green dots indicate auto-Abs classically found in APS-1 patients. (S) Detection of 

IgG auto-Abs against IL17A, IL17F, or IL-22 by multiplex beads-array. (T) Luciferase-based 

neutralization assay for detecting auto-Abs neutralizing the 13 IFN-α subtypes and IFN- ω at a 

concentration of 1 ng/mL in patients with a p52LOF/IκBδGOF variant (n=17), a p52LOF/IκBδLOF 

variant (n=1) or APS-1 (n=1), and plasma from healthy donors (n=3) (left panels) and patients 

with inborn errors of RelB (n=2), NIK (n=2) or BAFFR (n=1), and plasma from healthy donors 

(n=3) or APS-1 (n=1) (right panel). The neutralization capacity of the corresponding plasma 

samples against IFN-a2 or IFN-ω at concentrations of 10 ng/mL and 100 pg/mL is shown as 

gray (neutralizing) or white (non-neutralizing) squares.  

 

Supplementary Fig. 6. Auto-Abs against type I IFNs prevent ISG induction in blood and 

the upper respiratory tract during COVID-19, a defect that can be rescued by exogenous 

IFN-β treatment. (A) Changes in the titers of auto-Abs against IFN-a2, as measured by Gyros, 

with age in patients with a p52LOF/IκBδGOF variant and COVID-19. Red arrows indicate the 

onset of SARS-CoV-2 infection. (B) Correlation between age and COVID-19 severity in 

patients with inborn errors of NF-κB2. The light red square represents a patient neutralizing 

only IFN-ω at 100 pg/mL. (C) Post-vaccinal anti-S Ig levels in patients with a p52LOF/IκBδGOF 

variant who encountered SARS-CoV-2. (D) COVID severity and age correlation in patients 

with a p52LOF/IκBδGOF (n=8), p52LOF/IκBδLOF (n=2), or p52GOF/IκBδLOF (n=3) variant 

previously vaccinated who were infected by SARS-CoV-2 (period October 2021 to February 

2022). (E) Overview of the longitudinal investigation of COVID-19 episodes in two patients 

with a p52LOF/IκBδGOF variant. (F) Heatmap showing the neutralization profile in the two 

patients during COVID-19. (G) Neutralization capacity of the nasal swab from patients with a 

p52LOF/IκBδGOF variant and COVID-19 (n=2), and individuals infected with the omicron 
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variant but without detectable neutralizing auto-Abs against type I IFNs. (H) Longitudinal 

follow-up of the anti-S and anti-N IgG in P27 and P28 during the course of COVID-19, before 

and after treatment by the infusion of an anti-S monoclonal Ab (mAb, gray arrow). (I) IFN 

module M.10.1 and M.8.3 enrichment score of individual samples during the course of COVID-

19 in P27 and P28 or in two age-matched controls infected with SARS-CoV-2 before and after 

the treatment of P27 and P28 with IFN-β (left panel) and RNA-seq comparison of gene 

expression between day 0, day 3, day 5, day 12 and day 13 or day 27 in the P27 and P28.   
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