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Background: Worldwide about 1.5 million clinical cases of hepatitis A virus (HAV) infections occur every
year and increasingly countries are introducing HAV vaccination into the childhood immunization sched-
ule with a single dose instead of the originally licenced two dose regimen. Diagnosis of acute HAV infec-
tion is determined serologically by anti-HAV-IgM detection using ELISA. Additionally anti-HAV-IgG can
become positive during the early phase of symptoms, but remains detectable after infection and also after
vaccination against HAV. Currently no serological marker allows the differentiation of HAV vaccinated
individuals and those with a past infection with HAV. Such differentiation would greatly improve evalu-
ation of vaccination campaigns and risk assessment of HAV outbreaks. Here we tested the HAV non-
structural protein 2A, important for the capsid assembly, as a biomarker for the differentiation of the
immune status in previously infected and vaccinated individuals.
Methods: HAV antigens were recombinantly expressed as glutathione-S-transferase (GST) fusion pro-
teins. Using glutathione tagged, magnetic fluorescent beads (Luminex�), the proteins were affinity puri-
fied and used in a multiplex serological assay. The multiplex HAV assay was validated using 381 reference
sera in which the immune status HAV negative, vaccinated or infected was established using the Abbott
ARCHITECT� HAVAb-IgM or IgG, the commercial HAV ELISA from Abnova and documentation in vaccina-
tion cards.
Results: HAV multiplex serology showed a sensitivity of 99% and specificity of 95% to detect anti-HAV
IgG/IgM positive individuals. HAV biomarker 2A allowed the differentiation between previously infected
and vaccinated individuals. HAV vaccinated individuals and previously infected individuals could be
identified with 92% accuracy.
Conclusion: HAV biomarker 2A can be used to differentiate between previously HAV-vaccinated and nat-
urally infected individuals. Within a multiplex serological approach this assay can provide valuable novel
information in the context of outbreak investigations, longitudinal population based studies and evalua-
tions of immunization campaigns.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Infection with hepatitis A virus (HAV) is a major public health
problem all over the world, in the worst case resulting in an acute
inflammation of the liver [1].
HAV belongs to the family of Picornaviridae, genus Hepatovirus
and has a single stranded, positive orientated 7.5 kb RNA genome
with one open reading frame (ORF) [2–6].

So far seven different genotypes have been identified from the
known human isolates, however, only one serotype has been
described until 2011 [7–9]. This allowed the development of a
universally applied vaccine based on an inactivated, attenuated
hepatitis A virus, which was licensed in 1995 [10–13]. An assort-
ment of inactivated monovalent hepatitis A vaccines from various
companies are available. For example Havrix, Vaqta and Avaxim
are inactivated viral vaccines; Epaxal and HAVpur are virosomal
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vaccines [14,15]. Recommendations of hepatitis A vaccination in
countries with low endemicity comprise high-risk groups, persons
at occupational risk and travellers [16]. Countries with high or
transitional endemicity and high burden of disease have imple-
mented routine childhood immunization schedules against HAV
for children between the ages of 12 and 24 month (e.g. Argentina,
Greece) [17].

Vaccination with an inactivated vaccine can induce a different
antibody response than infection with wild-type virus. Stewart
et al. described the production of antibodies against the non-
structural protein 3C exclusively in serum of acute infected
patients but not in immunized subjects [18]. But still, the distinc-
tion between natural infection with HAV and an induced immu-
nization by vaccination in serum samples remains difficult.
Approaches have been made combining a commercially available
HAV ELISA and a self-developed ELISA using recombinant 3C pro-
teinase as antigen [18,19]. However, the necessity to combine
assays is time-consuming and requires multiple amounts of
serum.

For epidemiological studies the differentiation between
infected and vaccinated individuals is of major interest, i.e. for
serosurveys to assess the epidemiological situation during out-
breaks or after HAV vaccination campaigns. So far studies involving
the assessment of the vaccination status have to rely on the avail-
ability, completeness and legibility of vaccination cards which
however may often not be the case [20]. Another challenge in
assessing vaccine effectiveness is that HAV infection is often
asymptomatic or subclinical, which raises the demand for a bio-
marker identifying natural HAV infections not confounded with
HAV vaccinations. For countries that recently introduced a HAV
vaccination strategy, the differentiation of HAV vaccinated and
infected people via serum analysis would allow reliable assess-
ments of the vaccination coverage and vaccine effectiveness and
would thus provide greatly desired evidence for evaluation and
potential adjustment of vaccination strategies [21,22].

For these reasons we developed a HAV multiplex serological
assay with the aim to serologically differentiate between individu-
als naturally infected with HAV and those who received vaccina-
tion against HAV.
2. Materials and methods

2.1. Generation of recombinant HAV proteins

The nucleotide sequence NC_001489.1 (NCBI Reference
Sequence) for HAV strain HM175 was used. The genome belongs
to the isolate HM175, genotype IB (isolate HM175, Human/Aus-
tralia/HM175/1976). Full length coding sequences of structural
HAV proteins VP1 (bp 2208–3107), VP2 (bp804-1469), VP3 (bp
1470–2207), VP4 (bp 741–803) and non-structural HAV proteins
2A (bp 3108–3674), 2B (bp 3675–3995), 2C (bp3996-5000), 3A
(bp 5001–5222), 3B (bp 5223–5291), 3C (bp 5292–5948) and 3D
(bp 5949–7415) were commercially synthesized (Eurofins Geno-
mics, Ebersberg, Germany) after codon-optimisation for Escherichia
coli (E. coli). The HAV antigens were expressed as N-terminal GST
fusion proteins using a modified pGEX4T3 vector as described by
Sehr et al. [23]. All clones were verified by sequence analysis.
Fusion proteins were expressed in E. coli BL21 in Terrific Broth
medium at 20 �C over night and lysed in a high-pressure homoge-
nizer (HTU-DIGI-Press, G. Heinemann). Successful full-length anti-
gen expression was verified by Coomassie staining, Western Blot
and GST-capture ELISA, to estimate concentrations of the specific
antigens as previously described [23,24]. A concentration of
70 mg/ml total lysate protein or less was shown to be sufficient to
reach antigen saturation and beads were loaded with lysates
diluted to 1 mg/ml.

2.2. Multiplex serology

2.2.1. Covalent coupling of glutathione-casein and whole HAV to
Luminex microspheres

Glutathione-Casein (GC) was produced as described previously
[23] and coupled to spectrally distinct carboxylated, fluorescence
labelled magnetic beads (MagPlex�; Luminex�) following the
description by Waterboer et al. [25]. Deviating from the described
protocol, a magnetic separator (Dyna MagTM-2, Life technologies)
was used for the washing steps.

Whole formalin inactivated HAV (Aviva Systems Biology, Cat #
OPMA04543) was coupled to magnetic beads using AMGTM Activa-
tion Kit for Multiplex Microspheres according to the manufac-
turer’s protocol (Anteo Technologies, Cat # A-LMPAKMM). The
activated magnetic beads (200 ml) were incubated with 20 mg/ml
formalin inactivated HAV for 1 hour at room temperature.

2.2.2. Multiplex serology
All 11 HAV antigens were expressed as single GST-tagged pro-

teins in E. coli, however only VP1, VP2, VP3, 2A, 2C and 3C could
be produced in sufficient quantity and quality to be used for mul-
tiplex serology [25]. The complete bead set consisted of beads pre-
senting these antigens, loaded and affinity-purified on GC coupled
beads and beads directly coupled with whole inactivated HAV.
Serum (2 ml) was used in a final dilution of 1:100.

2.3. Serum samples

2.3.1. Validation samples
For the validation of the assay 361 reference sera were collected

from different German and international cooperation partners. We
received 120 HAV negative samples from the National Reference
Centre for HAV and HEV, Regensburg. This institute provided also
HAV positive samples (10 samples), as did the Governmental Insti-
tute of Public Health of Lower Saxony (NLGA), Hanover (30 sam-
ples), the University Hospital Ulm (35 samples) and the
Competence Network Hepatitis (HepNet) of the German Liver
Foundation, Hanover (20 samples).

We received additional samples with infected and vaccinated
status from the Ludwig-Maximilians-Universität München (LMU)
(11 samples) as well as serum from vaccinated and infected chil-
dren (age 0–14 years) from the National and Kapodistrian Univer-
sity of Athens, Greece (69 samples).

The serum status of all these samples had been determined by
the provider with Abbott ARCHITECT� HAVAb-IgG/IgM and IgG,
respectively in the case of the serum samples from Greece. The
vaccination status had been confirmed using vaccination cards.

Additionally, we collected 35 samples from HAV vaccinated
individuals in a survey at the Helmholtz Centre for Infection
Research (HZI), (ethical approval, #2198–2014 MHH Hanover)
and 31 samples during Pretest II of the German National Cohort
(ethical approval Ethics Committee of the State Boards of Physi-
cians of the German Federal State of Lower Saxony). The vaccina-
tion status was confirmed with the Hepatitis A virus Ab ELISA Kit
(KA0284, Abnova) and vaccination cards.

2.3.2. Control samples
Three control serum samples were used in each run to monitor

the quality of the run: Human standard IgG (Privigen 100 mg/ml
infusion solution; CSL Behring), an anti-HAV IgG+ control from a
previously, clinically diagnosed HAV infected individual and a pool
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of 16 different IgG+ serum samples from the reference sample pool
of IgG+ infected individuals.
2.4. Assay validation and statistical analyses

The assay validation was based on a publication by Shankar
et al., using three validation panels of reference sera [26].

Validation panel 1, consisting of 50 HAV IgG negative sera, was
used for the first validation step, determining the antigen specific
cutoff, defining the threshold above which a serum is considered
positive for the particular antigen. The panel was measured twice
each by two analysts. Normal distribution for all antigens was
assessed after transformation into natural logarithm (ln) scale
and exclusion of outliers (±1.5 interquartile range (IQR)). The assay
run means and variances for each antigen were compared using
ANOVA. The antigen cutoff can either be a fixed cutoff, resulting
in the same value in all future HAV multiplex assays, or a floating
cutoff, calculated anew for each run using normalisation sera.
According to Shankar et al. a fixed cutoff (mean + 1.645 standard
deviation) is determined when mean and variance are the same
for all runs; else the floating cutoff is assigned. In the first valida-
tion step the normalisation factor (fixed cutoff – mean of HAV neg-
ative normalisation sera) was determined, using ten of the 50
negative sera from panel 1 as normalisation sera. Each subsequent
run contained these normalisation sera and the floating cutoff was
calculated as mean of the normalisation sera + normalisation fac-
tor, thus adjusting the cutoff for a lower or higher run specific
mean fluorescence intensity (MFI). An example is shown in the
supplementary Table 1 for panel 2.

Validation panel 2 was used to define which antigens are neces-
sary to identify and distinguish HAV negative, infected and vacci-
nated individuals. This assay cutoff defines for which or how
many HAV antigens a serum must be positive to be considered
HAV infected or vaccinated. Validation panel 3 was used to assess
assay accuracy. A detailed description of the panels can be found
in Table 1.

For standardization, the individual antigen reactions in the
three control serum samples were categorized: low MFI (20–
199), medium MFI (200–1999), high MFI (2000–8000) and very
high MFI (>8000), allowing the detection of errors in assay perfor-
mance in case of systematic deviations from the expected category.

All statistical tests were performed two-sided, and P values
below 0.05 were considered significant. Box plots depict ln-
transformed MFI values. The line inside the boxes represents the
median, the diamond the mean. The boxes are delimited by the
first and third quartile and whiskers extend to the 1.5 � IQR,
respectively. Outliers are presented as circles.

For statistical analysis and graphical presentations of the results
SAS 9.2 was used.
Table 1
371 HAV serum samples were used in the validation process according to infection or vac
samples (n)). The serum samples were assigned to six groups: negative adults (A), infected
infected adults.

HAV status Group n total

Purpose of panel
HAV IgG negative Adults (A) 126
HAV IgG positive/infected Children (B) 22
HAV IgG positive/vaccinated Children (C) 47
HAV IgG positive/vaccinated Adults (D) 67
HAV IgG positive/infected Adults (E) 44
HAV RNA or IgM positive Adults (F) 55

Total 361
3. Results

Three panels with reference sera were used for the validation of
HAV multiplex serology, listed in Table 1. Validation panels 1 and
2, used to determine the specific antigen cutoff and assay cutoff,
contained adult sera; panel 3, used to determine assay accuracy,
additionally contained sera from vaccinated and infected children.
Furthermore, validation panel 2 had a higher share of HAV RNA or
IgM positive samples while panel 3 contained more prevalent IgG
positive samples.

Due to differences in the mean for each of the four measure-
ments of validation panel 1, a floating cutoff had to be determined
as antigen cutoff for future assay applications. Supplementary
Table 1 shows the normalisation factor calculated across all four
runs of panel 1 and its application to calculate the floating cutoff
for the run of validation panel 2.

Fig. 1 shows the reaction of the three HAV serum sample groups
(negative (0), infected (1) and vaccinated (2)) towards the different
antigens used in the assay. While HAV negative serum samples (0)
were below the antigen cutoff for all the antigens (HAV – 3C) HAV
vaccinated serum samples (2) reacted only against the whole vir-
ion (HAV) but not against the recombinantly expressed single anti-
gens VP1 – 3C. HAV infected serum samples (1) showed reactivity
against HAV and the recombinant antigens. Thus, the sensitivity
and specificity per antigen was calculated separately for HAV
infected and vaccinated samples (Table 2). Differentiating between
HAV negative and infected individuals, antigen 2A exhibited the
highest sensitivity (88%[CI95%: 77–99%]) and specificity (98%
[CI95%: 95–102%]) among the recombinant antigens, while the
HAV virion could be used to differentiate between HAV negative
and vaccinated individuals with a sensitivity of 100% and speci-
ficity of 97%[CI95%: 91–103%]) Thus, a combination of the whole
HAV virion and 2A could be used as assay cutoff to determine
the HAV immune status. Positivity against whole HAV virion and
2A indicated a previously HAV infected state while antibody reac-
tivity against only whole HAV virion determined an HAV vacci-
nated immune state (Table 3). Based on these findings for panel
2 the sensitivity of the HAV multiplex serology was 99%[CI95%:
96–101%] and the specificity 100%. The accuracy for detecting vac-
cinated and infected individuals was 97%[CI95%: 91–103%] and 88%
[CI95%: 77–99%], respectively. For confirmation of the assay accu-
racy, validation panel 3 was analysed (Table 4). The sensitivity
and specificity to distinguish HAV positive (anti-HAV IgG/IgA/IgM
+) from HAV negative sera was 99%[CI95%: 98–101%] and 95%
[CI95%: 85–105%], respectively. Serum samples from vaccinated
individuals could be identified with 91%[CI95%: 85–97%] accuracy
and HAV infected samples with 78%[CI95%: 69–87%] accuracy. The
remaining 22% were assigned a vaccinated immune status.

Fig. 2 shows the immune response towards the two biomarkers
needed to define the immune status classified into the six groups:
cination status and their distribution among the three validation panels (number of
(B) and vaccinated (C) children, vaccinated (D) adults and infected (E) and acute (F)

n panel 1 n panel 2 n panel 3

Antigen cutoff Assay cutoff Assay accuracy
50 56 20
– – 22
– – 47
– 33 34
– – 44
10 34 11

60 123 178



Fig. 1. Validation of multiplex serology for the different HAV antigens with negative (0; n = 56), infected (1; n = 34) and vaccinated (2; n = 33) serum samples in serum panel
2. Lines across indicate the floating cutoffs for HAV virion (HAV) (7.3) and 2A (6.6).

Table 2
Depicted are the sensitivity and specificity with which the different serum groups, HAV vaccinated (VAC) and infected (INF), from validation panel 2 reacted towards the used
antigens. While the HAV vaccinated serum samples only responded against the whole viral particle coupled directly to the beads (HAV virion), antibodies in HAV infected samples
bound also to the recombinant HAV antigens.

HAV virion Recombinant HAV antigens

VP1 VP2 VP3 2A 2C 3C

Sensitivity (%) 100 100 68 68 88 88 82 85
Specificity (%) 97 100 91 98 80 98 82 85
Serum status VAC INF INF INF INF INF INF INF

Table 3
Distribution of serum samples in validation panel 2 according to the reference immune status and the determined status in HAV multiplex serology (HAV multiplex). Definition of
HAV virion positive samples as vaccinated and HAV virion and 2A positive samples as HAV infected would result in a sensitivity of 99% and a specificity of 100%. 88% of infected
samples and 97% of vaccinated samples would be correctly identified.

Reference immune status

Negative Infected Vaccinated Total

HAV multiplex HAV neg. 56 0 1 57
HAV/2A pos. 0 30 0 30
HAV pos./2A neg. 0 4 32 36
Total 56 34 33 123

Table 4
Distribution of serum samples in validation panel 3 according to the reference immune status and the determined status in HAV multiplex serology (HAV multiplex). The
sensitivity is 99%, specificity 95% and the accuracy to detect infected individuals is 78% and for vaccinated individuals 91%. Values in brackets show the share of IgM positive.

Reference immune status

Negative Infected Vaccinated Total

HAV multiplex Negative 19 0 1 20
Infected 0 60 (10) 6 66
Vaccinated 1 17 (1) 74 92
Total 20 77 (11) 81 178
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negative adults (A), infected-IgG+ (B) and vaccinated (C) children,
vaccinated (D), infected-IgG+ (E) and acute infected-IgM+ (F)
adults. While the immune response could still be differentiated
into anti-HAV negative and anti-HAV positive, according to the
antigenicity towards whole HAV virion, infected children (B)
showed a 20–30% reduced response towards the 2A antigen com-



Fig. 2. Distribution of serum samples in panel 3 according to age groups and HAV immune status: negative adults (A; n = 20), infected children (B; n = 22), vaccinated children
(C; n = 47), vaccinated adults (D; n = 34), infected adults (E; n = 44), acute infected adults (F; n = 11). The lines across indicate the floating cutoffs for the virion (HAV) (6.7) and
2A (6.7).
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pared to adults (E, F). Furthermore, antigenicity against 2A was
reduced about 10% in HAV prevalent-IgG+ sera (E) compared to
IgM positive serum samples (F).

Of the serum samples, defined by the provider as HAV infected
serostatus due to the source and IgG+ status, 12 samples were con-
sistently (�4 measurements) misclassified as HAV vaccinated.
They were 2A negative and showed a low response towards the
remaining HAV fusion antigens.
4. Discussion

To fulfil the need to differentiate between the immune
responses of previously HAV infected individuals and HAV vacci-
nated ones, we developed and clinically validated a HAV multiplex
serological assay which requires minimal amounts of serum and
allows high-throughput application.

To date, only experimental ELISA assays have been developed to
distinguish HAV infected from vaccinated individuals based on the
exclusive expression of non-structural proteins during HAV infec-
tion. The assays were tested using experimentally infected and
vaccinated chimpanzees [18,27]. None of the assays has progressed
to an applicable state for human samples.

Unlike in the veterinarian context, where vaccines are designed
with deletions in non-structural proteins to allow easy differentia-
tion between infected and vaccinated animals (DIVA) [28–30], the
human HAV vaccines are based on full virus particles [10–13].
Therefore assays detecting antibodies against a single antigen only,
were insufficient for our approach. Using the multiplex platform
from Luminex� allowed us to combine promising recombinant
HAV antigens for the targeted differentiation of HAV vaccinated
and infected individuals. The non-structural protein 2A, allowed
us to differentiate between vaccinated and infected individuals
[31]. However, serum samples from vaccinated individuals gener-
ally showed a poor response against recombinant antigens pro-
duced in E. coli, including the structural surface proteins. HAV
antigens are produced by mammalian cells upon infection. Their
expression in E. coli can result in incorrect folding or posttransla-
tional modification. Furthermore, whole virus presents conforma-
tional epitopes consisting of amino acid stretches overlapping
VP1 and VP3, thus generating neutralizing epitopes not present
on the individual antigen [32,33]. Our recombinant antigens have
most likely not been folded correctly, thereby probably presenting
only linear epitopes. This may have reduced the number of pre-
sented epitopes, thus reducing the signal strength of reactive anti-
bodies present in vaccinated serum samples. Antibodies produced
through HAV vaccination are only targeting the three dimensional
virion and not the potential linear epitopes, presented to the
immune system only during the replication and assembly process.
Serum from vaccinated individuals therefore does not contain anti-
bodies reactive to our recombinant HAV antigens, but is exclu-
sively reactive against the whole HAV virion.

Our assay achieved a sensitivity of 99% and specificity of 95%.
More weight is placed on false positive sera in panel 3 due to a
comparatively low number of negative sera. A combination of
results from panel 2 and panel 3 would lead to a specificity of
99%. The assay accuracy for the distinction of HAV infected and
vaccinated individuals with 78% and 91% respectively, leaves room
for improvement. This may be attributed to the mixed composition
of the HAV infected serum pool, consisting in panel 3 of mainly IgG
+ serum samples and only to a smaller percentage of IgM+ samples.
The status ‘HAV infected’ was assigned by the provider due to
source (age of sample donor >70, lack of vaccination information)
and IgG+ status. From the samples concerned, 12 (71%) were con-
tinuously measured as samples from HAV vaccinated individuals in
HAV multiplex serology. Nine of the relevant samples were col-
lected from children in a study where hepatitis A vaccination his-
tory was retrieved from hospital records [34]. Most likely, the
relevant children’s immune status as ’vaccinated’ was not docu-
mented in the vaccination cards and therefore misdiagnosed as
infected in the respective study. Infection with HAV leads to a live-
long immunity and usually takes place during early childhood in
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populations endemic for HAV [35]. The low reactivity of these nine
samples against antigen 2A can therefore not be explained by a
developing immune system in children in general, since adults,
infected during childhood, show a strong response against 2A even
years later.

The remaining three IgG+ samples were from adults from a
sample set, of which the infection status was assumed due to the
age (>70) of the subject. The HAV vaccination was implemented
in 1995 in Germany thus the assumption was that older sample
donors were infected during childhood in case of anti-HAV IgG
positivity. It is conceivable however that a small proportion of
these sample donors was not infected during childhood but
received the vaccination at a later stage. In a sensitivity analysis
hypothetically reassigning these 12 samples to the status of HAV
vaccinated would result in an accuracy of 92% to identify vacci-
nated and (previously) HAV infected individuals from a serum
pool.

To our knowledge, our assay is the first to allow distinction
between HAV vaccinated and previously infected status thus
allowing the investigation of the serological status in human serum
samples independently from the documented vaccination status,
to observe vaccination coverage rate in populations and to exam-
ine effectiveness and effectivity of vaccination campaigns.

This is of particular relevance in countries where, in contrast to
the originally licensed vaccination scheme single dose regimens
are being implemented such as in Argentina in 2005 [36].

Furthermore, the ability to serologically distinguish HAV
infected and vaccinated serum samples can provide improved risk
assessments for epidemics in populations where a relevant propor-
tion of HAV vaccinated individuals is to be expected as was the
case in Germany 2012 or in Italy 2013 [37,38]. Furthermore this
approach may complement existing biomarkers for clinical vaccine
trials and licensing procedures. In the field of occupational medi-
cine it may serve to confirm infection despite prior vaccination.

In conclusion, our high-throughput HAV multiplex serology
allows the differentiation of HAV infected and vaccinated individ-
uals with high sensitivity and specificity and thereby introduces a
novel diagnostic tool for vaccine trials, seroepidemiologic surveys
and individual risk ascertainment in occupational medicine and
outbreak investigations.
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